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Preface

x

Data preparation may be the most important part of a machine learning project. It is the most
time consuming part, although it seems to be the least discussed topic. Data preparation,
sometimes referred to as data preprocessing, is the act of transforming raw data into a form that
is appropriate for modeling. Machine learning algorithms require input data to be numbers, and
most algorithm implementations maintain this expectation. As such, if your data contains data
types and values that are not numbers, such as labels, you will need to change the data into
numbers. Further, specific machine learning algorithms have expectations regarding the data
types, scale, probability distribution, and relationships between input variables, and you may
need to change the data to meet these expectations.

The philosophy of data preparation is to discover how to best expose the unknown underlying
structure of the problem to the learning algorithms. This often requires an iterative path of

experimentation through a suite of different data preparation techniques in order to discover
what works well or best. The vast majority of the machine learning algorithms you may use on a
project are years to decades old. The implementation and application of the algorithms are well
understood. So much so that they are routine, with amazing fully featured open-source machine
learning libraries like scikit-learn in Python. The thing that is different from project to project is

the data. You may be the first person (ever!) to use a specific dataset as the basis for a predictive
modeling project. As such, the preparation of the data in order to best present it to the problem

of the learning algorithms is the primary task of any modern machine learning
pro ject.

The challenge of data preparation is that each dataset is unique and different. Datasets differ in
the number of variables (tens, hundreds, thousands, or more), the types of the variables

(numeric, nominal, ordinal, boolean), the scale of the variables, the drift in the values over time,
and more. As such, this makes discussing data preparation a challenge. Either specific case

studies are used, or focus is put on the general methods that can be used across projects. The
result is that neither approach is explored. I wrote this book to address the lack of solid advice

on data preparation for predictive modeling machine learning projects. I structured the book
around the main data preparation activities and designed the tutorials around the most

important and widely used data preparation techniques, with a focus on how to use them in the
general case so that you can directly copy and paste the code examples into your own projects

and get started.
Data preparation is important to machine learning, and I believe that if it is taught at the right

level for practitioners, it can be a fascinating, fun, directly applicable, and immeasurably
useful toolbox of techniques. I hope that you agree.

Jason Brownlee
2020



Part I

Intro duction

xi



Welcome

Before we get started, let’s make sure you are in the right place. This book is for developers that
may know some applied machine learning. Maybe you know how to work through a predictive
modeling problem end-to-end, or at least most of the main steps, with popular tools. The
lessons in this book do assume a few things about you, such as:

 
You know your way around basic Python for programming.
 
You may know some basic NumPy for array manipulation.
 
You may know some basic Scikit-Learn for modeling.

This guide was written in the top-down and results-first machine learning style that you’re
used to from Machine Learning Mastery.

Welcome to Data Preparation for Machine Learning. Data preparation is the process of
transforming raw data into a form that is more appropriate for modeling. It may be the most
important, most time consuming, and yet least discussed area of a predictive modeling machine
learning project. Data preparation is relatively straightforward in principle, although there is a
suite of high-level classes of techniques, each with a range of different algorithms, and each
appropriate for a specific situation with their own hyperparameters, tips, and tricks. I designed
this book to teach you the techniques for data preparation step-by-step with concrete and
executable examples in Python.

This book will teach you the techniques for data preparation that you need to know as a machine
learning practitioner. After reading and working through this book, you will know:

 
The importance of data preparation for predictive modeling machine learning projects.
 

How to prepare data in a way that avoids data leakage, and in turn, incorrect model
evaluation.

 
How to identify and handle problems with messy data, such as outliers and missing values.

 
How to identify and remove irrelevant and redundant input variables with feature selection

metho ds.

xii

About Your Outcomes

Who Is This Book For?



This book was written to be read linearly, from start to finish. That being said, if you know the
basics and need help with a specific method or type of problem, then you can flip straight to that
section and get started. This book was designed for you to read on your workstation, on the
screen, not on a tablet or eReader. My hope is that you have the book open right next to your
editor and run the examples as you read about them.

This book is not intended to be read passively or be placed in a folder as a reference text. It
is a playbook, a workbook, and a guidebook intended for you to learn by doing and then apply
your new understanding with working Python examples. To get the most out of the book, I would
recommend playing with the examples in each tutorial. Extend them, break them, then fix them.

xiii

 
How to know which feature selection method to choose based on the data types of the

variables.

 
How to scale the range of input variables using normalization and standardization tech-

niques.

 
How to encode categorical variables as numbers and numeric variables as categories.
 
How to transform the probability distribution of input variables.
 

How to transform a dataset with different variable types and how to transform target
variables.

 
How to project variables into a lower-dimensional space that captures the salient data

relationships.

This book is not a substitute for an undergraduate course in data preparation (if such courses
exist) or a textbook for such a course, although it could complement such materials. For a good
list of top papers, textbooks, and other resources on data preparation, see the Further Reading
section at the end of each tutorial.

This book was designed around major data preparation techniques that are directly relevant to
real-world problems. There are a lot of things you could learn about data preparation, from
theory to abstract concepts to APIs. My goal is to take you straight to developing an intuition for
the elements you must understand with laser-focused tutorials. The tutorials were designed to
focus on how to get results with data preparation methods. As such, the tutorials give you the
tools to both rapidly understand and apply each technique or operation. There is a mixture of
both tutorial lessons and mini-projects to introduce the methods and give plenty of examples
and opportunities to practice using them.

Each of the tutorials is designed to take you about one hour to read through and complete,
excluding the extensions and further reading. You can choose to work through the lessons one

per day, one per week, or at your own pace. I think momentum is critically important, and

How to Read This Book

About the Book Structure



The code examples were carefully designed to demonstrate the purpose of a given lesson. For
this reason, the examples are highly targeted.

 
Algorithms were demonstrated on synthetic and small standard datasets to give you the

context and confidence to bring the techniques to your own projects.

 
Model configurations used were discovered through trial and error and are skillful, but

not optimized. This leaves the door open for you to explore new and possibly better
configurations.
 

Code examples are complete and standalone. The code for each lesson will run as-is with
no code from prior lessons or third parties needed beyond the installation of the required

packages.

xiv

this book is intended to be read and used, not to sit idle. I recommend picking a schedule and
sticking to it. The tutorials are divided into six parts; they are:
 

Part 1: Foundation. Discover the importance of data preparation, tour data preparation
techniques, and discover the best practices to use in order to avoid data leakage.

 
Part 2: Data Cleaning. Discover how to transform messy data into clean data by

identifying outliers and identifying and handling missing values with statistical and
modeling techniques.
 

Part 3: Feature Selection. Discover statistical and modeling techniques for feature
selection and feature importance and how to choose the technique to use for different

variable types.
 

Part 4: Data Transforms. Discover how to transform variable types and variable
probability distributions with a suite of standard data transform algorithms.

 
Part 5: Advanced Transforms. Discover how to handle some of the trickier aspects of

data transforms, such as handling multiple variable types at once, transforming targets,
and saving transforms after you choose a final model.
 

Part 6: Dimensionality Reduction. Discover how to remove input variables by pro-
jecting the data into a lower dimensional space with dimensionality-reduction algorithms.

Each part targets a specific learning outcome, and so does each tutorial within each part.
This acts as a filter to ensure you are only focused on the things you need to know to get to a
specific result and do not get bogged down in the math or near-infinite number of digressions.
The tutorials were not designed to teach you everything there is to know about each of the
methods. They were designed to give you an understanding of how they work, how to use them,
and how to interpret the results the fastest way I know how: to learn by doing.
About Python Code Examples



Each lesson includes a list of further reading resources. This may include:

 
Research papers.
 
Books and book chapters.
 
Webpages.
 
API documentation.
 
Open-source projects.

Wherever possible, I have listed and linked to the relevant API documentation for key objects
and functions used in each lesson so you can learn more about them. When it comes to research
papers, I have listed those that are first to use a specific technique or first in a specific problem
domain. These are not required reading but can give you more technical details, theory, and
configuration details if you’re looking for it. Wherever possible, I have tried to link to the freely
available version of the paper on the arXiv pre-print archive. You can search for and download
any of the papers listed on Google Scholar Search1. Wherever possible, I have tried to link to
books on Amazon. I don’t know everything, and if you discover a good resource related to a
given lesson, please let me know so I can update the book.
1

xv

A complete working example is presented with each tutorial for you to inspect and copy-paste.
All source code is also provided with the book and I would recommend running the provided
files whenever possible to avoid any copy-paste issues. The provided code was developed in a
text editor and is intended to be run on the command line. No special IDE or notebooks are
required. If you are using a more advanced development environment and are having trouble,
try running the example from the command line instead.

Machine learning algorithms are stochastic. This means that they will make different
predictions when the same model configuration is trained on the same training data. On top of
that, each experimental problem in this book is based on generating stochastic predictions. As a
result, this means you will not get exactly the same sample output presented in this book. This
is by design. I want you to get used to the stochastic nature of the machine learning algorithms.
If this bothers you, please note:
 

You can re-run a given example a few times and your results should be close to the values
rep orted.

 
You can make the output consistent by fixing the random number seed.
 

You can develop a robust estimate of the skill of a model by fitting and evaluating it
multiple times and taking the average of the final skill score (highly recommended).

All code examples were tested on a POSIX-compatible machine with Python 3. All code
examples will run on modest and modern computer hardware. I am only human, and there
may be a bug in the sample code. If you discover a bug, please let me know so I can fix it and
correct the book (and you can request a free update at any time).
About Further Reading

https://scholar.google.com

https://scholar.google.com/
https://scholar.google.com/


Are you ready? Let’s dive in!

You might need help along the way. Don’t worry; you are not alone.

 
Help with a technique? If you need help with the technical aspects of a specific

operation or technique, see the Further Reading section at the end of each tutorial.

 
Help with APIs? If you need help with using a Python library, see the list of resources

in the Further Reading section at the end of each lesson, and also see Appendix A.

 
Help with your workstation? If you need help setting up your environment, I would

recommend using Anaconda and following my tutorial in Appendix B.

 
Help in general? You can shoot me an email. My details are in Appendix A.

xvi

About Getting Help
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Part II

Foundation

1



Chapter 1

Data Preparation in a Machine
Learning Project

2

This tutorial is divided into three parts; they are:

1. Applied Machine Learning Process

2. What Is Data Preparation

3. How to Choose Data Preparation Techniques

Data preparation may be one of the most difficult steps in any machine learning project. The
reason is that each dataset is different and highly specific to the project. Nevertheless, there are
enough commonalities across predictive modeling projects that we can define a loose sequence
of steps and subtasks that you are likely to perform. This process provides a context in which we
can consider the data preparation required for the project, informed both by the definition of the
project performed before data preparation and the evaluation of machine learning algorithms
performed after. In this tutorial, you will discover how to consider data preparation as a step in a
broader predictive modeling machine learning project. After completing this tutorial, you will
know:

 
Each predictive modeling project with machine learning is different, but there are common

steps performed on each project.

 
Data preparation involves best exposing the unknown underlying structure of the problem

to learning algorithms.

 
The steps before and after data preparation in a project can inform what data preparation

methods to apply, or at least explore.

Let’s get started.1.1 TutorialOverview



1.2. Applied Machine Learning Process 3

This step is concerned with learning enough about the project to select the framing or framings
of the prediction task. For example, is it classification or regression, or some other higher-order
problem type? It involves collecting the data that is believed to be useful in making a prediction
and clearly defining the form that the prediction will take. It may also involve talking to project
stakeholders and other people with deep expertise in the domain. This step also involves taking
a close look at the data, as well as perhaps exploring the data using summary statistics and data
visualization.

Each machine learning project is different because the specific data at the core of the project is
different. You may be the first person (ever!) to work on the specific predictive modeling
problem. That does not mean that others have not worked on similar prediction tasks or perhaps
even the same high-level task, but you may be the first to use the specific data that you have
collected (unless you are using a standard dataset for practice).

... the right features can only be defined in the context of both the model and the
data; since data and models are so diverse, it’s difficult to generalize the practice of

feature engineering across projects.

— Page vii, Feature Engineering for Machine Learning, 2018.

This makes each machine learning project unique. No one can tell you what the best results
are or might be, or what algorithms to use to achieve them. You must establish a baseline
in performance as a point of reference to compare all of your models and you must discover
what algorithm works best for your specific dataset. You are not alone, and the vast literature
on applied machine learning that has come before can inform you as to techniques to use to
robustly evaluate your model and algorithms to evaluate.

Even though your project is unique, the steps on the path to a good or even the best
result are generally the same from project to project. This is sometimes referred to as the
applied machine learning process, data science process, or the older name knowledge

discovery in
databases (KDD). The process of applied machine learning consists of a sequence of steps. The
steps are the same, but the names of the steps and tasks performed may differ from description
to description. Further, the steps are written sequentially, but we will jump back and forth
between the steps for any given project. I like to define the process using the four high-level
steps:
 
Step 1: Define Problem.
 
Step 2: Prepare Data.
 
Step 3: Evaluate Models.
 
Step 4: Finalize Model.
Let’s take a closer look at each of these steps.

1.2 AppliedMachineLearningProcess

1.2.1 Step 1: Define Problem



1.3. What Is Data Preparation 4

On a predictive modeling project, such as classification or regression, raw data typically cannot
be used directly. This is because of reasons such as:

 
Machine learning algorithms require data to be numbers.

This step is concerned with evaluating machine learning models on your dataset. It requires that
you design a robust test harness used to evaluate your models so that the results you get can be
trusted and used to select among the models that you have evaluated. This involves tasks such
as selecting a performance metric for evaluating the skill of a model, establishing a baseline or
floor in performance to which all model evaluations can be compared, and a resampling
technique for splitting the data into training and test sets to simulate how the final model will be
used.

For quick and dirty estimates of model performance, or for a very large dataset, a single train-
test split of the data may be performed. It is more common to use k-fold cross-validation as the

data resampling technique, often with repeats of the process to improve the robustness of the
result. This step also involves tasks for getting the most out of well-performing models such

as hyperparameter tuning and ensembles of models.

This step is concerned with selecting and using a final model. Once a suite of models has been
evaluated, you must choose a model that represents the solution to the project. This is called
model selection and may involve further evaluation of candidate models on a hold out validation
dataset, or selection via other project-specific criteria such as model complexity. It may also
involve summarizing the performance of the model in a standard way for project stakeholders,
which is an important step. Finally, there will likely be tasks related to the productization of the
model, such as integrating it into a software project or production system and designing a
monitoring and maintenance schedule for the model.

Now that we are familiar with the process of applied machine learning and where data
preparation fits into that process, let’s take a closer look at the types of tasks that may be

p erformed.

This step is concerned with transforming the raw data that was collected into a form that can be
used in modeling.

Data pre-processing techniques generally refer to the addition, deletion, or transfor-
mation of training set data.

— Page 27, Applied Predictive Modeling, 2013.

We will take a closer look at this step in the next section.

1.2.3

1.2.2

1.2.4

Step 2: Prepare Data

Step 4: Finalize Model

Step 3: Evaluate Models

1.3 WhatIsDataPreparation
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Some machine learning algorithms impose requirements on the data.
 
Statistical noise and errors in the data may need to be corrected.
 
Complex nonlinear relationships may be teased out of the data.

As such, the raw data must be pre-processed prior to being used to fit and evaluate a machine
learning model. This step in a predictive modeling project is referred to as data preparation,
although it goes by many other names, such as data wrangling, data cleaning, data pre-processing
and feature engineering. Some of these names may better fit as sub-tasks for the broader data
preparation process. We can define data preparation as the transformation of raw data into a
form that is more suitable for modeling.

Data wrangling, which is also commonly referred to as data munging, transformation,
manipulation, janitor work, etc., can be a painstakingly laborious process.

— Page v, Data Wrangling with R, 2016.

This is highly specific to your data, to the goals of your project, and to the algorithms that
will be used to model your data. We will talk more about these relationships in the next section.
Nevertheless, there are common or standard tasks that you may use or explore during the data
preparation step in a machine learning project. These tasks include:
 
Data Cleaning: Identifying and correcting mistakes or errors in the data.
 

Feature Selection: Identifying those input variables that are most relevant to the task.
 
Data Transforms: Changing the scale or distribution of variables.
 
Feature Engineering: Deriving new variables from available data.
 
Dimensionality Reduction: Creating compact projections of the data.

Each of these tasks is a whole field of study with specialized algorithms. We will take a closer
look at these tasks in Chapter 3. Data preparation is not performed blindly. In some cases,
variables must be encoded or transformed before we can apply a machine learning algorithm,
such as converting strings to numbers. In other cases, it is less clear, for example: scaling a
variable may or may not be useful to an algorithm.

The broader philosophy of data preparation is to discover how to best expose the underlying
structure of the problem to the learning algorithms. This is the guiding light. We don’t know
the underlying structure of the problem; if we did, we wouldn’t need a learning algorithm
to discover it and learn how to make skillful predictions. Therefore, exposing the unknown
underlying structure of the problem is a process of discovery, along with discovering the well- or
best-performing learning algorithms for the project.

However, we often do not know the best re-representation of the predictors to improve
model performance. Instead, the re-working of predictors is more of an art, requiring
the right tools and experience to find better predictor representations. Moreover, we

may need to search many alternative predictor representations to improve model
p erformance.
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— Page xii, Feature Engineering and Selection, 2019.

It can be more complicated than it appears at first glance. For example, different input
variables may require different data preparation methods. Further, different variables or
subsets of input variables may require different sequences of data preparation methods. It
can feel overwhelming, given the large number of methods, each of which may have their own
configuration and requirements. Nevertheless, the machine learning process steps before and
after data preparation can help to inform what techniques to consider.

How do we know what data preparation techniques to use in our data?

As with many questions of statistics, the answer to “which feature engineering
methods are the best?” is that it depends. Specifically, it depends on the model

being used and the true relationship with the outcome.

— Page 28, Applied Predictive Modeling, 2013.

On the surface, this is a challenging question, but if we look at the data preparation step in
the context of the whole project, it becomes more straightforward. The steps in a predictive
modeling project before and after the data preparation step inform the data preparation that
may be required. The step before data preparation involves defining the problem. As part of
defining the problem, this may involve many sub-tasks, such as:

 
Gather data from the problem domain.
 
Discuss the project with subject matter experts.
 
Select those variables to be used as inputs and outputs for a predictive model.
 
Review the data that has been collected.
 
Summarize the collected data using statistical methods.
 
Visualize the collected data using plots and charts.

Information known about the data can be used in selecting and configuring data preparation
methods. For example, plots of the data may help identify whether a variable has outlier values.
This can help in data cleaning operations. It may also provide insight into the probability
distribution that underlies the data. This may help in determining whether data transforms
that change a variable’s probability distribution would be appropriate. Statistical methods,
such as descriptive statistics, can be used to determine whether scaling operations might be
required. Statistical hypothesis tests can be used to determine whether a variable matches a
given probability distribution.

Pairwise plots and statistics can be used to determine whether variables are related, and if
so, how much, providing insight into whether one or more variables are redundant or irrelevant
to the target variable. As such, there may be a lot of interplay between the definition of
the problem and the preparation of the data. There may also be interplay between the data
preparation step and the evaluation of models. Model evaluation may involve sub-tasks such as:

1.4 HowtoChooseDataPreparationTechniques



  Data cleansing, Wikipedia.

  Data preparation, Wikipedia.

  Data pre-processing, Wikipedia.

, 2019.

, 2018.

This section provides more resources on the topic if you are looking to go deeper.
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Select a performance metric for evaluating model predictive skill.
 
Select a model evaluation procedure.
 
Select algorithms to evaluate.
 
Tune algorithm hyperparameters.
 
Combine predictive models into ensembles.

Information known about the choice of algorithms and the discovery of well-performing
algorithms can also inform the selection and configuration of data preparation methods. For
example, the choice of algorithms may impose requirements and expectations on the type and
form of input variables in the data. This might require variables to have a specific probability
distribution, the removal of correlated input variables, and/or the removal of variables that are
not strongly related to the target variable.

The choice of performance metric may also require careful preparation of the target variable
in order to meet the expectations, such as scoring regression models based on prediction error
using a specific unit of measure, requiring the inversion of any scaling transforms applied to that
variable for modeling. These examples, and more, highlight that although data preparation is an
important step in a predictive modeling project, it does not stand alone. Instead, it is strongly
influenced by the tasks performed both before and after data preparation. This highlights the
highly iterative nature of any predictive modeling project.

 

1.5 Further Reading

1.5.1
 

Bo oks

1.5.2 Articles

Feature Engineering and Selection

Feature Engineering for Machine Learning
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In this tutorial, you discovered how to consider data preparation as a step in a broader predictive
modeling machine learning project. Specifically, you learned:

 
Each predictive modeling project with machine learning is different, but there are common

steps performed on each project.

 
Data preparation involves best exposing the unknown underlying structure of the problem

to learning algorithms.

 
The steps before and after data preparation in a project can inform what data preparation

methods to apply, or at least explore.
In the next section, we will take a closer look at why data preparation is so important for
predictive modeling.

1.6 Summary

1.6.1 Next



Chapter 2

Why Data Preparation is So Important
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This tutorial is divided into three parts; they are:

1. What Is Data in Machine Learning

2. Raw Data Must Be Prepared

3. Predictive Modeling Is Mostly Data Preparation

On a predictive modeling project, machine learning algorithms learn a mapping from input
variables to a target variable. The most common form of predictive modeling project involves so-
called structured data or tabular data. This is data as it looks in a spreadsheet or a matrix, with
rows of examples and columns of features for each example. We cannot fit and evaluate
machine learning algorithms on raw data; instead, we must transform the data to meet the
requirements of individual machine learning algorithms. More than that, we must choose a
representation for the data that best exposes the unknown underlying structure of the
prediction problem to the learning algorithms in order to get the best performance given our
available resources on a predictive modeling project.

Given that we have standard implementations of highly parameterized machine learning
algorithms in open source libraries, fitting models has become routine. As such, the most

challenging part of each predictive modeling project is how to prepare the one thing that is
unique to the project: the data used for modeling. In this tutorial, you will discover the

importance of data preparation for each machine learning project. After completing this tutorial,
you will know:

 
Structured data in machine learning consists of rows and columns.
 
Data preparation is a required step in each machine learning project.
 

The routineness of machine learning algorithms means the majority of effort on each
project is spent on data preparation.

Let’s get started.
2.1 TutorialOverview



2.2. What Is Data in Machine Learning

prediction.

10

 Output Variable: Column in the dataset to be predicted by a model.
When you collect your data, you may have to transform it so it forms one large table. For

example, if you have your data in a relational database, it is common to represent entities in
separate tables in what is referred to as a normal form so that redundancy is minimized. In
order to create one large table with one row per subject or entity that you want to model, you
may need to reverse this process and introduce redundancy in the data in a process referred to
as denormalization.

If your data is in a spreadsheet or database, it is standard practice to extract and save the
data in CSV format. This is a standard representation that is portable, well understood, and
ready for the predictive modeling process with no external dependencies. Now that we are
familiar with structured data, let’s look at why we need to prepare the data before we can use
it in a model.

Predictive modeling projects involve learning from data. Data refers to examples or cases from
the domain that characterize the problem you want to solve. In supervised learning, data is
composed of examples where each example has an input element that will be provided to a
model and an output or target element that the model is expected to predict.

What we call data are observations of real-world phenomena. [...] Each piece of data
provides a small window into a limited aspect of reality.

— Page 1, Feature Engineering for Machine Learning, 2018.

Classification is an example of a supervised learning problem where the target is a label, and
regression is an example of a supervised learning problem where the target is a number. The

input data may have many forms, such as an image, time series, text, video, and so on. The most
common type of input data is typically referred to as tabular data or structured data. This is data

as you might see it in a spreadsheet, in a database, or in a comma separated variable
(CSV) file. This is the type of data that we will focus on.

Think of a large table of data. In linear algebra, we refer to this table of data as a matrix. The
table is composed of rows and columns. A row represents one example from the problem

domain, and may be referred to as an example, an instance, or a case. A column represents the
properties observed about the example and may be referred to as a variable, a feature, or a

attribute.

 
Row. A single example from the domain, often called an instance, example or sample in

machine learning.

 
Column. A single property recorded for each example, often called a variable, predictor,

or feature in machine learning.

For example, the columns used for input to the model are referred to as input variables, and
the column that contains the target to be predicted is referred to as the output variable. The
rows used to train a model are referred to as the training dataset and the rows used to evaluate
the model are referred to as the test dataset.
 

Input Variables: Columns in the dataset provided to a model in order to make a

2.2 WhatIsDatainMachineLearning
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Even if your raw data contains only numbers, some data preparation is likely required. There are
many different machine learning algorithms to choose from for a given predictive modeling
project. We cannot know which algorithm will be appropriate, let alone the most appropriate for
our task. Therefore, it is a good practice to evaluate a suite of different candidate algorithms
systematically and discover what works well or best on our data. The problem is, each algorithm
has specific requirements or expectations with regard to the data.

Even though your data is represented in one large table of rows and columns, the variables in
the table may have different data types. Some variables may be numeric, such as integers,
floating-point values, ranks, rates, percentages, and so on. Other variables may be names,
categories, or labels represented with characters or words, and some may be binary,
represented with 0 and 1 or True and False. The problem is, machine learning algorithms at their
core operate on numeric data. They take numbers as input and predict a number as output. All
data is seen as vectors and matrices, using the terminology from linear algebra.

As such, raw data must be changed prior to training, evaluating, and using machine learning
models. Sometimes the changes to the data can be managed internally by the machine learning

algorithm; most commonly, this must be handled by the machine learning practitioner prior to
modeling in what is commonly referred to as data preparation or data pre-processing.

Data collected from your domain is referred to as raw data and is collected in the context of a
problem you want to solve. This means you must first define what you want to predict, then
gather the data that you think will help you best make the predictions. This data collection
exercise often requires a domain expert and may require many iterations of collecting more
data, both in terms of new rows of data once they become available and new columns once
identified as likely relevant to making a prediction.

 
Raw data: Data in the form provided from the domain.

In almost all cases, raw data will need to be changed before you can use it as the basis for
modeling with machine learning.

A feature is a numeric representation of an aspect of raw data. Features sit between
data and models in the machine learning pipeline. Feature engineering is the act
of extracting features from raw data and transforming them into formats that are

suitable for the machine learning model.
— Page vii, Feature Engineering for Machine Learning, 2018.

The cases with no data preparation are so rare or so trivial that it is practically a rule to
prepare raw data in every machine learning project. There are three main reasons why you
must prepare raw data in a machine learning project. Let’s take a look at each in turn.

2.3 Raw Data Must Be Prepared

2.3.1 MachineLearningAlgorithmsExpectNumbers

2.3.2 MachineLearningAlgorithmsHaveRequirements



Even if you prepare your data to meet the expectations of each model, you may not get the best
performance. Often, the performance of machine learning algorithms that have strong
expectations degrades gracefully to the degree that the expectation is violated. Further, it is
common for an algorithm to perform well or better than other methods, even when its
expectations have been ignored or completely violated. It is a common enough situation that
this must be factored into the preparation and evaluation of machine learning algorithms.

The idea that there are different ways to represent predictors in a model, and that
some of these representations are better than others, leads to the idea of feature

engineering — the process of creating representations of data that increase the
effectiveness of a model.

— Page 3, Feature Engineering and Selection, 2019.

2.3.RawDataMustBePrepared 12

... data preparation can make or break a model’s predictive ability. Different models
have different sensitivities to the type of predictors in the model; how the predictors

enter the model is also important.

— Page 27, Applied Predictive Modeling, 2013.

For example, some algorithms assume each input variable, and perhaps the target variable,
to have a specific probability distribution. This is often the case for linear machine learning
models that expect each numeric input variable to have a Gaussian probability distribution.
This means that if you have input variables that are not Gaussian or nearly Gaussian, you
might need to change them so that they are Gaussian or more Gaussian. Alternatively, it may
encourage you to reconfigure the algorithm to have a different expectation on the data.

Some algorithms are known to perform worse if there are input variables that are irrelevant
or redundant to the target variable. There are also algorithms that are negatively impacted if
two or more input variables are highly correlated. In these cases, irrelevant or highly correlated
variables may need to be identified and removed, or alternate algorithms may need to be used.
There are also algorithms that have very few requirements about the probability distribution of
input variables or the presence of redundancies, but in turn, may require many more examples
(rows) in order to learn how to make good predictions.

The need for data pre-processing is determined by the type of model being used. Some
procedures, such as tree-based models, are notably insensitive to the characteristics

of the predictor data. Others, like linear regression, are not.

— Page 27, Applied Predictive Modeling, 2013.

As such, there is an interplay between the data and the choice of algorithms. Primarily, the
algorithms impose expectations on the data, and adherence to these expectations requires the
data to be appropriately prepared. Conversely, the form of the data may provide insight into
those algorithms that are more likely to be effective.

2.3.3 ModelPerformanceDependsonData



Modeling data with machine learning algorithms has become routine. The vast majority of the
common, popular, and widely used machine learning algorithms are decades old. Linear
regression is more than 100 years old. That is to say, most algorithms are well understood and
well parameterized and there are standard definitions and implementations available in open
source software, like the scikit-learn machine learning library in Python.

Although the algorithms are well understood operationally, most don’t have satisfiable theories
about why they work or how to map algorithms to problems. This is why each

2.4.PredictiveModelingIsMostlyDataPreparation 13

The performance of a machine learning algorithm is only as good as the data used to train it.
This is often summarized as garbage in, garbage out. Garbage is harsh, but it could mean a
weak representation of the problem that insufficiently captures the dynamics required to learn
how to map examples of inputs to outputs.

Let’s take for granted that we have sufficient data to capture the relationship between input
and output variables. It’s a slippery and domain-specific principle, and in practice, we have the
data that we have, and our job is to do the best we can with that data. A dataset may be a
weak representation of the problem we are trying to solve for many reasons, although there are
two main classes of reason. It may be because complex nonlinear relationships are compressed
in the raw data that can be unpacked using data preparation techniques. It may also be because
the data is not perfect, ranging from mild random fluctuations in the observations, referred to
as a statistical noise, to errors that result in out-of-range values and conflicting data.
 

Complex Data: Raw data contains compressed complex nonlinear relationships that
may need to be exposed

 
Messy Data: Raw data contains statistical noise, errors, missing values, and conflicting

examples.

We can think about getting the most out of our predictive modeling project in two ways:
focus on the model and focus on the data. We could minimally prepare the raw data and begin
modeling. This puts full onus on the model to tease out the relationships in the data and learn
the mapping function from inputs to outputs as best it can. This may be a reasonable path
through a project and may require a large dataset and a flexible and powerful machine learning
algorithm with few expectations, such as random forest or gradient boosting.

Alternately, we could push the onus back onto the data and the data preparation process.
This requires that each row of data best expresses the information content of the data for
modeling. Just like denormalization of data in a relational database to rows and columns, data
preparation can denormalize the complex structure inherent in each single observation. This is
also a reasonable path. It may require more knowledge of the data than is available but allows
good or even best modeling performance to be achieved almost irrespective of the machine
learning algorithm used.

Often a balance between these approaches is pursued on any given project. That is both
exploring powerful and flexible machine learning algorithms and using data preparation to best
expose the structure of the data to the learning algorithms. This is all to say, data preprocessing
is a path to better data, and in turn, better model performance.

2.4 Predictive Modeling Is Mostly Data Preparation



This section provides more resources on the topic if you are looking to go deeper.
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predictive modeling project is empirical rather than theoretical, requiring a process of systematic
experimentation of algorithms on data. Given that machine learning algorithms are routine for
the most part, the one thing that changes from project to project is the specific data used in
the modeling.

Data quality is one of the most important problems in data management, since dirty
data often leads to inaccurate data analytics results and incorrect business decisions.

— Page xiii, Data Cleaning, 2019.

If you have collected data for a classification or regression predictive modeling problem,
it may be the first time ever, in all of history, that the problem has been modeled. You are
breaking new ground. That is not to say that the class of problems has not been tackled before;
it probably has and you can learn from what was found if results were published. But it is today
that your specific collection of observations makes your predictive modeling problem unique. As
such, the majority of your project will be spent on the data. Gathering data, verifying data,
cleaning data, visualizing data, transforming data, and so on.

... it has been stated that up to 80% of data analysis is spent on the process of
cleaning and preparing data. However, being a prerequisite to the rest of the data

analysis workflow (visualization, modeling, reporting), it’s essential that you become
fluent and efficient in data wrangling techniques.

— Page v, Data Wrangling with R, 2016.

Your job is to discover how to best expose the learning algorithms to the unknown underlying
structure of your prediction problem. The path to get there is through data preparation. In
order for you to be an effective machine learning practitioner, you must know:

 
The different types of data preparation to consider on a project.
 
The top few algorithms for each class of data preparation technique.
 
When to use and how to configure top data preparation techniques.

This is often hard-earned knowledge, as there are few resources dedicated to the topic.
Instead, you often must scour literature for papers to get an idea of what’s available and how to
use it.

Practitioners agree that the vast majority of time in building a machine learning
pipeline is spent on feature engineering and data cleaning. Yet, despite its importance,

the topic is rarely discussed on its own.

— Page vii, Feature Engineering for Machine Learning, 2018.

2.5 Further Reading
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  Data cleansing, Wikipedia.

  Data preparation, Wikipedia.

  Data pre-processing, Wikipedia.

, 2019.

, 2018.

In the next section, we will take a tour of the different types of data preparation techniques and
how they may be grouped together.

In this tutorial, you discovered the importance of data preparation for each machine learning
project. Specifically, you learned:

 
Structured data in machine learning consists of rows and columns.
 
Data preparation is a required step in each machine learning project.
 

The routineness of machine learning algorithms means the majority of effort on each
project is spent on data preparation.
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Chapter 3

Tour of Data Preparation Techniques

This tutorial is divided into six parts; they are:

1. Common Data Preparation Tasks

2. Data Cleaning

3. Feature Selection

4. Data Transforms

5. Feature Engineering

6. Dimensionality Reduction

16

Predictive modeling machine learning projects, such as classification and regression, always
involve some form of data preparation. The specific data preparation required for a dataset
depends on the specifics of the data, such as the variable types, as well as the algorithms that
will be used to model them that may impose expectations or requirements on the data.

Nevertheless, there is a collection of standard data preparation algorithms that can be applied
to structured data (e.g. data that forms a large table like in a spreadsheet). These data

preparation algorithms can be organized or grouped by type into a framework that can be
helpful when comparing and selecting techniques for a specific project. In this tutorial, you will

discover the common data preparation tasks performed in a predictive modeling machine
learning task. After completing this tutorial, you will know:

 
Techniques such as data cleaning can identify and fix errors in data like missing values.

 
Data transforms can change the scale, type, and probability distribution of variables in

the dataset.

 
Techniques such as feature selection and dimensionality reduction can reduce the number

of input variables.

Let’s get started.3.1 TutorialOverview
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We can define data preparation as the transformation of raw data into a form that is more
suitable for modeling. Nevertheless, there are steps in a predictive modeling project before and
after the data preparation step that are important and inform the data preparation that is to be
performed. The process of applied machine learning consists of a sequence of steps (introduced
in Chapter 1). We may jump back and forth between the steps for any given project, but all
projects have the same general steps; they are:

 
Step 1: Define Problem.
 
Step 2: Prepare Data.
 
Step 3: Evaluate Models.
 
Step 4: Finalize Model.

We are concerned with the data preparation step (Step 2), and there are common or standard
tasks that you may use or explore during the data preparation step in a machine learning
project. The types of data preparation performed depend on your data, as you might expect.
Nevertheless, as you work through multiple predictive modeling projects, you see and require
the same types of data preparation tasks again and again.
These tasks include:
 
Data Cleaning: Identifying and correcting mistakes or errors in the data.
 

Feature Selection: Identifying those input variables that are most relevant to the task.
 
Data Transforms: Changing the scale or distribution of variables.
 
Feature Engineering: Deriving new variables from available data.
 
Dimensionality Reduction: Creating compact projections of the data.

This provides a rough framework that we can use to think about and navigate different data
preparation algorithms we may consider on a given project with structured or tabular data.
Let’s take a closer look at each in turn.

Data cleaning involves fixing systematic problems or errors in messy data. The most useful data
cleaning involves deep domain expertise and could involve identifying and addressing specific
observations that may be incorrect. There are many reasons data may have incorrect values,
such as being mistyped, corrupted, duplicated, and so on. Domain expertise may allow obviously
erroneous observations to be identified as they are different from what is expected, such as a
person’s height of 200 feet.

Once messy, noisy, corrupt, or erroneous observations are identified, they can be addressed.
This might involve removing a row or a column. Alternately, it might involve replacing

observations with new values. As such, there are general data cleaning operations that can be
performed, such as:

3.2

3.3 DataCleaning

Common Data Preparation Tasks



Figure 3.1: Overview of Data Cleaning Techniques.

Feature selection refers to techniques for selecting a subset of input features that are most
relevant to the target variable that is being predicted. This is important as irrelevant and
redundant input variables can distract or mislead learning algorithms possibly resulting in lower
predictive performance. Additionally, it is desirable to develop models only using the data that is
required to make a prediction, e.g. to favor the simplest possible well performing model.

Feature selection techniques may generally grouped into those that use the target variable
(supervised) and those that do not (unsupervised). Additionally, the supervised techniques can

be further divided into models that automatically select features as part of fitting the model
(intrinsic), those that explicitly choose features that result in the best performing model

(wrapper) and those that score each input feature and allow a subset to be selected (filter).

3.4.FeatureSelection 18

 
Using statistics to define normal data and identify outliers (Chapter 6.
 

Identifying columns that have the same value or no variance and removing them (Chap-
ter 5).

 
Identifying duplicate rows of data and removing them (Chapter 5).
 
Marking empty values as missing (Chapter 7).
 

Imputing missing values using statistics or a learned model (Chapters 8, 9 and 10).
Data cleaning is an operation that is typically performed first, prior to other data preparation

op erations.

3.4 FeatureSelection
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Figure 3.2: Overview of Feature Selection Techniques.

Statistical methods, such as correlation, are popular for scoring input features. The features
can then be ranked by their scores and a subset with the largest scores used as input to a model.
The choice of statistical measure depends on the data types of the input variables and a review
of different statistical measures that can be used is introduced in Chapter 11. Additionally, there
are different common feature selection use cases we may encounter in a predictive modeling
project, such as:
 
Categorical inputs for a classification target variable (Chapter 12).
 
Numerical inputs for a classification target variable (Chapter 13).
 
Numerical inputs for a regression target variable (Chapter 14).

When a mixture of input variable data types is present, different filter methods can be
used. Alternately, a wrapper method such as the popular Recursive Feature Elimination (RFE)
method can be used that is agnostic to the input variable type. We will explore using RFE for
feature selection in Chapter 11. The broader field of scoring the relative importance of input
features is referred to as feature importance and many model-based techniques exist whose
outputs can be used to aide in interpreting the model, interpreting the dataset, or in selecting
features for modeling. We will explore feature importance in Chapter 16.
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Figure 3.3: Overview of Data Variable Types.

We may wish to convert a numeric variable to an ordinal variable in a process called
discretization. Alternatively, we may encode a categorical variable as integers or boolean
variables, required on most classification tasks.

 
Discretization Transform: Encode a numeric variable as an ordinal variable (Chap-

Data transforms are used to change the type or distribution of data variables. This is a large
umbrella of different techniques and they may be just as easily applied to input and output
variables. Recall that data may have one of a few types, such as numeric or categorical, with
subtypes for each, such as integer and real-valued floating point values for numeric, and
nominal, ordinal, and boolean for categorical.

 
Numeric Data Type: Number values.
– Integer: Integers with no fractional part.
– Float: Floating point values.
 
Categorical Data Type: Label values.
– Ordinal: Labels with a rank ordering.
– Nominal: Labels with no rank ordering.
– Boolean: Values True and False.

The figure below provides an overview of this same breakdown of high-level data types.

3.5 DataTransforms



ter 20).

  Quantile Transform: Impose a probability distribution such as uniform or Gaussian
(Chapter 21).

An important consideration with data transforms is that the operations are generally
performed separately for each variable. As such, we may want to perform different operations
on different variable types. We may also want to use the transform on new data in the future.
This can be achieved by saving the transform objects to file along with the final model trained
on all available data.
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Ordinal Transform: Encode a categorical variable into an integer variable (Chapter 19).

 
One Hot Transform: Encode a categorical variable into binary variables (Chapter 19).

For real-valued numeric variables, the way they are represented in a computer means there
is dramatically more resolution in the range 0-1 than in the broader range of the data type.
As such, it may be desirable to scale variables to this range, called normalization. If the data
has a Gaussian probability distribution, it may be more useful to shift the data to a standard
Gaussian with a mean of zero and a standard deviation of one.

 
Normalization Transform: Scale a variable to the range 0 and 1 (Chapters 17 and 18).

 
Standardization Transform: Scale a variable to a standard Gaussian (Chapter 17).

The probability distribution for numerical variables can be changed. For example, if the
distribution is nearly Gaussian, but is skewed or shifted, it can be made more Gaussian using
a power transform. Alternatively, quantile transforms can be used to force a probability
distribution, such as a uniform or Gaussian on a variable with an unusual natural distribution.
 

Power Transform: Change the distribution of a variable to be more Gaussian (Chap-
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Figure 3.4: Overview of Data Transform Techniques.
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Feature engineering refers to the process of creating new input variables from the available
data. Engineering new features is highly specific to your data and data types. As such, it often
requires the collaboration of a subject matter expert to help identify new features that could be
constructed from the data. This specialization makes it a challenging topic to generalize to
general methods. Nevertheless, there are some techniques that can be reused, such as:

 
Adding a boolean flag variable for some state.
 
Adding a group or global summary statistic, such as a mean.
 

Adding new variables for each component of a compound variable, such as a date-time.
A popular approach drawn from statistics is to create copies of numerical input variables

that have been changed with a simple mathematical operation, such as raising them to a power
or multiplied with other input variables, referred to as polynomial features.

 
Polynomial Transform: Create copies of numerical input variables that are raised to a

power (Chapter 23).

The theme of feature engineering is to add broader context to a single observation or
decompose a complex variable, both in an effort to provide a more straightforward perspective
on the input data. I like to think of feature engineering as a type of data transform, although it
would be just as reasonable to think of data transforms as a type of feature engineering.

3.6 Feature Engineering



3.7. Dimensionality Reduction

Figure 3.5: Overview of Dimensionality Reduction Techniques.
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The number of input features for a dataset may be considered the dimensionality of the data. For
example, two input variables together can define a two-dimensional area where each row of
data defines a point in that space. This idea can then be scaled to any number of input variables
to create large multi-dimensional hyper-volumes. The problem is, the more dimensions this
space has (e.g. the more input variables), the more likely it is that the dataset represents a very
sparse and likely unrepresentative sampling of that space. This is referred to as the curse of
dimensionality.

This motivates feature selection, although an alternative to feature selection is to create a
projection of the data into a lower-dimensional space that still preserves the most important

properties of the original data. This is referred to generally as dimensionality reduction and
provides an alternative to feature selection (Chapter 27). Unlike feature selection, the variables

in the projected data are not directly related to the original input variables, making the
projection difficult to interpret. The most common approach to dimensionality reduction is to

use a matrix
factorization technique:
 
Principal Component Analysis (Chapter 29).
 
Singular Value Decomposition (Chapter 30).

The main impact of these techniques is that they remove linear dependencies between input
variables, e.g. correlated variables. Other approaches exist that discover a lower dimensionality
reduction. We might refer to these as model-based methods such as linear discriminant analysis
and perhaps autoencoders.
 
Linear Discriminant Analysis (Chapter 28).

Sometimes manifold learning algorithms can also be used, such as Kohonen self-organizing
maps (SOME) and t-Distributed Stochastic Neighbor Embedding (t-SNE).

3.7 DimensionalityReduction



3.8. Further Reading

  Data cleansing, Wikipedia.

  Data preparation, Wikipedia.

  Data pre-processing, Wikipedia.

, 2019.

, 2018.

Single-precision floating-point format, Wikipedia.

This section provides more resources on the topic if you are looking to go deeper.

24

In the next section, we will explore how to perform data preparation in a way that avoids data
leakage.

In this tutorial, you discovered the common data preparation tasks performed in a predictive
modeling machine learning task. Specifically, you learned:

 
Techniques, such data cleaning, can identify and fix errors in data like missing values.
 

Data transforms can change the scale, type, and probability distribution of variables in
the dataset.

 
Techniques such as feature selection and dimensionality reduction can reduce the number

of input variables.

3.9

3.8

Summary
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Chapter 4

Data Preparation Without Data
Leakage
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This tutorial is divided into three parts; they are:

1. Problem With Naive Data Preparation

2. Data Preparation With Train and Test Sets

3. Data Preparation With k-fold Cross-Validation

Data preparation is the process of transforming raw data into a form that is appropriate for
modeling. A naive approach to preparing data applies the transform on the entire dataset before
evaluating the performance of the model. This results in a problem referred to as data leakage,
where knowledge of the hold-out test set leaks into the dataset used to train the model. This can
result in an incorrect estimate of model performance when making predictions on new data. A
careful application of data preparation techniques is required in order to avoid data leakage, and
this varies depending on the model evaluation scheme used, such as train-test splits or k-fold
cross-validation. In this tutorial, you will discover how to avoid data leakage during data
preparation when evaluating machine learning models. After completing this tutorial, you will
know:

 
Naive application of data preparation methods to the whole dataset results in data leakage

that causes incorrect estimates of model performance.

 
Data preparation must be prepared on the training set only in order to avoid data leakage.

 
How to implement data preparation without data leakage for train-test splits and k-fold

cross-validation in Python.

Let’s get started.4.1 TutorialOverview
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The manner in which data preparation techniques are applied to data matters. A common
approach is to first apply one or more transforms to the entire dataset. Then the dataset is split
into train and test sets or k-fold cross-validation is used to fit and evaluate a machine learning
mo del.

1. Prepare Dataset

2. Split Data

3. Evaluate Models

Although this is a common approach, it is dangerously incorrect in most cases. The problem
with applying data preparation techniques before splitting data for model evaluation is that it
can lead to data leakage and, in turn, will likely result in an incorrect estimate of a model’s
performance on the problem. Data leakage refers to a problem where information about the
holdout dataset, such as a test or validation dataset, is made available to the model in the
training dataset. This leakage is often small and subtle but can have a marked effect on
p erformance.

... leakage means that information is revealed to the model that gives it an unrealistic
advantage to make better predictions. This could happen when test data is leaked
into the training set, or when data from the future is leaked to the past. Any time

that a model is given information that it shouldn’t have access to when it is making
predictions in real time in production, there is leakage.

— Page 93, Feature Engineering for Machine Learning, 2018.

We get data leakage by applying data preparation techniques to the entire dataset. This is
not a direct type of data leakage, where we would train the model on the test dataset. Instead,
it is an indirect type of data leakage, where some knowledge about the test dataset, captured in
summary statistics is available to the model during training. This can make it a harder type of
data leakage to spot, especially for beginners.

One other aspect of resampling is related to the concept of information leakage
which is where the test set data are used (directly or indirectly) during the training

process. This can lead to overly optimistic results that do not replicate on future
data points and can occur in subtle ways.

— Page 55, Feature Engineering and Selection, 2019.

For example, consider the case where we want to normalize data, that is scale input variables
to the range 0-1. When we normalize the input variables, this requires that we first calculate
the minimum and maximum values for each variable before using these values to scale the
variables. The dataset is then split into train and test datasets, but the examples in the training
dataset know something about the data in the test dataset; they have been scaled by the global
minimum and maximum values, so they know more about the global distribution of the variable
then they should.

4.2 Problem With Naive Data Preparation



Listing 4.1: Example of defining a synthetic binary classification dataset.

In this section, we will evaluate a logistic regression model using train and test sets on a
synthetic binary classification dataset where the input variables have been normalized. First,
let’s define our synthetic dataset. We will use the make classification() function to create the
dataset with 1,000 rows of data and 20 numerical input features. The example below creates
the dataset and summarizes the shape of the input and output variable arrays.
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We get the same type of leakage with almost all data preparation techniques; for example,
standardization estimates the mean and standard deviation values from the domain in order
to scale the variables. Even models that impute missing values using a model or summary
statistics will draw on the full dataset to fill in values in the training dataset. The solution
is straightforward. Data preparation must be fit on the training dataset only. That is, any
coefficients or models prepared for the data preparation process must only use rows of data in
the training dataset. Once fit, the data preparation algorithms or models can then be applied
to the training dataset, and to the test dataset.
1. Split Data.

2. Fit Data Preparation on Training Dataset.

3. Apply Data Preparation to Train and Test Datasets.

4. Evaluate Models.

More generally, the entire modeling pipeline must be prepared only on the training dataset
to avoid data leakage. This might include data transforms, but also other techniques such
feature selection, dimensionality reduction, feature engineering and more. This means so-called
model evaluation should really be called modeling pipeline evaluation.

In order for any resampling scheme to produce performance estimates that generalize
to new data, it must contain all of the steps in the modeling process that could

significantly affect the model’s effectiveness.

— Pages 54–55, Feature Engineering and Selection, 2019.

Now that we are familiar with how to apply data preparation to avoid data leakage, let’s
look at some worked examples.

4.3 DataPreparationWithTrainandTestSets

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)
# summarize the dataset
print(X.shape, y.shape)



Listing 4.4: Example of splitting the dataset into train and test sets.

We can then define our logistic regression algorithm via the
with default configuration, and fit it on the training dataset.

Listing 4.5: Example of defining and fitting the model on the training dataset.

The fit model can then make a prediction using the input data from the test set, and we can
compare the predictions to the expected values and calculate a classification accuracy score.
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Running the example creates the dataset and confirms that the input part of the dataset
has 1,000 rows and 20 columns for the 20 input variables and that the output variable has 1,000
examples to match the 1,000 rows of input data, one value per row.

Listing 4.2: Example output from defining a synthetic binary classification dataset.

Next, we can evaluate our model on a scaled dataset, starting with their naive or incorrect
approach.

The naive approach involves first applying the data preparation method, then splitting the data
before finally evaluating the model. We can normalize the input variables using the
MinMaxScaler class, which is first defined with the default configuration scaling the data to the
range 0-1, then the fit transform() function is called to fit the transform on the dataset and apply
it to the dataset in a single step. The result is a normalized version of the input variables, where
each column in the array is separately normalized (e.g. has its own minimum and maximum
calculated). Don’t worry too much about the specifics of this transform yet, we will go into a lot
more detail in Chapter 17.

class,

Listing 4.3: Example of configuring and applying the transform to the dataset.

Next, we can split our dataset into train and test sets using the train test split() function.
We will use 67 percent for the training set and 33 percent for the test set.

(1000, 20) (1000,)

...
# standardize the dataset
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

...
# fit the model
model =
LogisticRegression()
model.fit(X_train, y_train)

...
# evaluate the model
yhat = model.predict(X_test)
# evaluate predictions
accuracy = accuracy_score(y_test, yhat)

...
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

4.3.1 Train-Test Evaluation With Naive Data Preparation

LogisticRegression



4.3. Data Preparation With Train and Test Sets

Listing 4.6: Example of evaluating the model on the test dataset.

Tying this together, the complete example is listed below.

Listing 4.9: Example of splitting the dataset into train and test sets.
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Listing 4.7: Example of evaluating a model using a train-test split with data leakage.

Running the example normalizes the data, splits the data into train and test sets, then fits
and evaluates the model.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.
In this case, we can see that the estimate for the model is about 84.848 percent.

The correct approach to performing data preparation with a train-test split evaluation is to fit the
data preparation on the training set, then apply the transform to the train and test sets. This
requires that we first split the data into train and test sets.

Listing 4.8: Example output from evaluating a model using a train-test split with data leakage.

Given we know that there was data leakage, we know that this estimate of model accuracy
is wrong. Next, let’s explore how we might correctly prepare the data to avoid data leakage.

Accuracy: 84.848

print('Accuracy: %.3f' % (accuracy*100))

...
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

# naive approach to normalizing the data before splitting the data and evaluating the model
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)
# standardize the dataset
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
# fit the model
model = LogisticRegression()
model.fit(X_train, y_train)
# evaluate the model
yhat = model.predict(X_test)
# evaluate predictions
accuracy = accuracy_score(y_test, yhat)
print('Accuracy: %.3f' % (accuracy*100))

4.3.2 Train-Test Evaluation With Correct Data Preparation



Listing 4.10: Example of fitting the transform on the train set and applying it to both train and
test sets.

This avoids data leakage as the calculation of the minimum and maximum value for each
input variable is calculated using only the training dataset (X train) instead of the entire
dataset (X). The model can then be evaluated as before. Tying this together, the complete
example is listed below.
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We can then define the MinMaxScaler and call the fit() function on the training set, then
apply the transform() function on the train and test sets to create a normalized version of
each dataset.

Listing 4.11: Example of evaluating a model using a train-test split without data leakage.

Running the example splits the data into train and test sets, normalizes the data correctly,
then fits and evaluates the model.

...
# define the scaler
scaler = MinMaxScaler()
# fit on the training dataset
scaler.fit(X_train)
# scale the training dataset
X_train = scaler.transform(X_train) #
scale the test dataset
X_test = scaler.transform(X_test)

# correct approach for normalizing the data after the data is split before the model is
evaluated
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
# define the scaler
scaler = MinMaxScaler()
# fit on the training dataset
scaler.fit(X_train)
# scale the training dataset
X_train = scaler.transform(X_train)
# scale the test dataset
X_test = scaler.transform(X_test)
# fit the model
model = LogisticRegression()
model.fit(X_train, y_train)
# evaluate the model
yhat = model.predict(X_test)
# evaluate predictions
accuracy = accuracy_score(y_test, yhat)
print('Accuracy: %.3f' % (accuracy*100))



Listing 4.12: Example output from evaluating a model using a train-test split without data
leakage.

Naive data preparation with cross-validation involves applying the data transforms first, then
using the cross-validation procedure. We will use the synthetic dataset prepared in the previous
section and normalize the data directly.
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Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the estimate for the model is about 85.455 percent, which is
more accurate than the estimate with data leakage in the previous section that achieved an
accuracy of 84.848 percent. We expect data leakage to result in an incorrect estimate of model
performance. We would expect this to be an optimistic estimate with data leakage, e.g. better
performance, although in this case, we can see that data leakage resulted in slightly worse
performance. This might be because of the difficulty of the prediction task.

In this section, we will evaluate a logistic regression model using k-fold cross-validation on a
synthetic binary classification dataset where the input variables have been normalized. You may
recall that k-fold cross-validation involves splitting a dataset into k non-overlapping groups of
rows. The model is then trained on all but one group to form a training dataset and then
evaluated on the held-out fold. This process is repeated so that each fold is given a chance to be
used as the holdout test set. Finally, the average performance across all evaluations is reported.
The k-fold cross-validation procedure generally gives a more reliable estimate of model
performance than a train-test split, although it is more computationally expensive given the
repeated fitting and evaluation of models. Let’s first look at naive data preparation with k-fold
cross-validation.

Listing 4.13: Example of configuring and applying the transform to the dataset.

The k-fold cross-validation procedure must first be defined. We will use repeated stratified
10-fold cross-validation, which is a best practice for classification. Repeated means that the
whole cross-validation procedure is repeated multiple times, three in this case. Stratified means
that each group of rows will have the relative composition of examples from each class as the
whole dataset. We will use k = 10 or 10-fold cross-validation. This can be achieved using the
RepeatedStratifiedKFold which can be configured to three repeats and 10 folds, and then
using the cross val score() function to perform the procedure, passing in the defined model,
cross-validation object, and metric to calculate, in this case, accuracy.

Accuracy: 85.455

...
# standardize the dataset
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

4.4 DataPreparationWithk -fold Cross-Validation

4.4.1 Cross-Validation Evaluation With Naive Data Preparation
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Listing 4.14: Example of evaluating model performance using cross-validation.

We can then report the average accuracy across all of the repeats and folds. Tying this
all together, the complete example of evaluating a model with cross-validation using data
preparation with data leakage is listed below.

Listing 4.15: Example of evaluating a model using a cross-validation with data leakage.

Running normalizes the data first, then evaluates the model using repeated stratified k-fold
cross-validation and reports the mean and standard deviation of the classification accuracy for
the model when making predictions on data not used during training.

Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the model achieved an estimated accuracy of about 85.300
percent, which we know is incorrect given the data leakage allowed via the data preparation
pro cedure.

Listing 4.16: Example output from evaluating a model using a cross-validation with data leakage.

Next, let’s look at how we can evaluate the model with cross-validation and avoid data
leakage.

Accuracy: 85.300 (3.607)

...
# define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate the model using cross-validation
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)

# naive data preparation for model evaluation with k-fold cross-validation
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LogisticRegression
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)
# standardize the dataset
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
# define the model
model = LogisticRegression()
# define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate the model using cross-validation
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(scores)*100, std(scores)*100))
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Listing 4.18: Example of evaluating a modeling pipeline using cross-validation.

Tying this together, the complete example of correctly performing data preparation without
data leakage when using cross-validation is listed below.

Listing 4.17: Example of defining a modeling pipeline.

We can then pass the configured object to the cross val score() function for evaluation.

Data preparation without data leakage when using cross-validation is slightly more challenging.
It requires that the data preparation method is prepared on the training set and applied to the
train and test sets within the cross-validation procedure, e.g. the groups of folds of rows. We can
achieve this by defining a modeling pipeline that defines a sequence of data preparation steps to
perform and ending in the model to fit and evaluate.

To provide a solid methodology, we should constrain ourselves to developing the list
of preprocessing techniques, estimate them only in the presence of the training data

points, and then apply the techniques to future data (including the test set).

— Page 55, Feature Engineering and Selection, 2019.

The evaluation procedure changes from simply and incorrectly evaluating just the model
to correctly evaluating the entire pipeline of data preparation and model together as a single
atomic unit. This can be achieved using the Pipeline class. This class takes a list of steps
that define the pipeline. Each step in the list is a tuple with two elements. The first element is
the name of the step (a string) and the second is the configured object of the step, such as a
transform or a model. The model is only supported as the final step, although we can have as
many transforms as we like in the sequence.

4.4.2 Cross-Validation Evaluation With Correct Data Preparation

...
# define the pipeline
steps = list()
steps.append(('scaler', MinMaxScaler()))
steps.append(('model', LogisticRegression()))
pipeline = Pipeline(steps=steps)

# correct data preparation for model evaluation with k-fold cross-validation
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
# define dataset

...
# define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate the model using cross-validation
scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)



4.5. Further Reading

, 2013.

, 2018.

, 2016.

This section provides more resources on the topic if you are looking to go deeper.

, 2019.

Listing 4.20: Example output from evaluating a model using a cross-validation without data
leakage.
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Listing 4.19: Example of evaluating a model using a cross-validation without data leakage.
Running the example normalizes the data correctly within the cross-validation folds of the

evaluation procedure to avoid data leakage.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the model has an estimated accuracy of about 85.433 percent,
compared to the approach with data leakage that achieved an accuracy of about 85.300 percent.
As with the train-test example in the previous section, removing data leakage has resulted
in a slight improvement in performance when our intuition might suggest a drop given that
data leakage often results in an optimistic estimate of model performance. Nevertheless, the
examples demonstrate that data leakage may impact the estimate of model performance and
how to correct data leakage by correctly performing data preparation after the data is split.

Accuracy: 85.433 (3.471)

X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)
# define the pipeline
steps = list()
steps.append(('scaler', MinMaxScaler()))
steps.append(('model', LogisticRegression()))
pipeline = Pipeline(steps=steps)
# define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate the model using cross-validation
scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(scores)*100, std(scores)*100))

4.5 Further Reading
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https://amzn.to/2VLgpex

https://amzn.to/2VMhnat

https://amzn.to/2Kk6tn0

https://amzn.to/2zZOQXN

https://amzn.to/2VLgpex
https://amzn.to/2VMhnat
https://amzn.to/2Kk6tn0
https://amzn.to/2zZOQXN
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  Data preparation, Wikipedia.

  Data pre-processing, Wikipedia.

API.
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API.
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In this tutorial, you discovered how to avoid data leakage during data preparation when
evaluating machine learning models. Specifically, you learned:

 
Naive application of data preparation methods to the whole dataset results in data leakage

that causes incorrect estimates of model performance.

 
Data preparation must be prepared on the training set only in order to avoid data leakage.

 
How to implement data preparation without data leakage for train-test splits and k-fold

cross-validation in Python.

4.5.2 APIs
 

4.5.3 Articles

 

 

 

 

 

sklearn.preprocessing.MinMaxScaler

sklearn.datasets.make classification

sklearn.model selection.cross val score

sklearn.linear model.LogisticRegression

sklearn.model selection.train test split

https://en.wikipedia.org/wiki/Data_cleansing

https://en.wikipedia.org/wiki/Data_preparation

sklearn.model selection.RepeatedStratifiedKFold

https://en.wikipedia.org/wiki/Data_pre- processing

https://scikit- learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

https://scikit- learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.
html

https://scikit- learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.
html

https://scikit- learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

https://scikit- learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.
html

https://scikit- learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold
html

4.6 Summary

https://en.wikipedia.org/wiki/Data_cleansing
https://en.wikipedia.org/wiki/Data_preparation
https://en.wikipedia.org/wiki/Data_pre-processing
https://en.wikipedia.org/wiki/Data_pre-processing
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html
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This was the final tutorial in this part, in the next part will take a closer look at data cleaning
metho ds.

4.6.1 Next



Part III

Data Cleaning
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Chapter 5

Basic Data Cleaning
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This tutorial is divided into seven parts; they are:

1. Messy Datasets

2. Identify Columns That Contain a Single Value

3. Delete Columns That Contain a Single Value

4. Consider Columns That Have Very Few Values

5. Remove Columns That Have A Low Variance

6. Identify Rows that Contain Duplicate Data

7. Delete Rows that Contain Duplicate Data

Data cleaning is a critically important step in any machine learning project. In tabular data, there
are many different statistical analysis and data visualization techniques you can use to explore
your data in order to identify data cleaning operations you may want to perform. Before jumping
to the sophisticated methods, there are some very basic data cleaning operations that you
probably should perform on every single machine learning project. These are so basic that they
are often overlooked by seasoned machine learning practitioners, yet are so critical that if
skipped, models may break or report overly optimistic performance results. In this tutorial, you
will discover basic data cleaning you should always perform on your dataset. After completing
this tutorial, you will know:

 
How to identify and remove column variables that only have a single value.
 
How to identify and consider column variables with very few unique values.
 
How to identify and remove rows that contain duplicate observations.
Let’s get started.

5.1 TutorialOverview
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The so-called oil spill dataset is a standard machine learning dataset. The task involves
predicting whether the patch contains an oil spill or not, e.g. from the illegal or accidental
dumping of oil in the ocean, given a vector that describes the contents of a patch of a satellite
image. There are 937 cases. Each case is comprised of 48 numerical computer vision derived
features, a patch number, and a class label. The normal case is no oil spill assigned the class
label of 0, whereas an oil spill is indicated by a class label of 1. There are 896 cases for no oil
spill and 41 cases of an oil spill. You can learn more about the dataset here:

ilSpillDataset(oil-spill.csv1 O).

 
Oil Spill Dataset Description (oil-spill.names).2

Review the contents of the data file. We can see that the first column contains integers for
the patch number. We can also see that the computer vision derived features are real-valued
with differing scales such as thousands in the second column and fractions in other columns.
This dataset contains columns with very few unique values that provides a good basis for data
cleaning.

Data cleaning refers to identifying and correcting errors in the dataset that may negatively
impact a predictive model.

Data cleaning is used to refer to all kinds of tasks and activities to detect and repair
errors in the data.

— Page xiii, Data Cleaning, 2019.

Although critically important, data cleaning is not exciting, nor does it involve fancy
techniques. Just a good knowledge of the dataset.

Cleaning up your data is not the most glamourous of tasks, but it’s an essential part
of data wrangling. [...] Knowing how to properly clean and assemble your data will

set you miles apart from others in your field.

— Page 149, Data Wrangling with Python, 2016.

There are many types of errors that exist in a dataset, although some of the simplest errors
include columns that don’t contain much information and duplicated rows. Before we dive
into identifying and correcting messy data, let’s define some messy datasets. We will use two
datasets as the basis for this tutorial, the oil spill dataset and the iris flowers dataset.

5.2 MessyDatasets

5.2.1 OilSpillDataset

1
2
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil- spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil- spill.names

https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/oil-spill.names
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Listing 5.2: Example of a column that contains a single value.
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Listing 5.1: Sample of the iris flowers dataset.

We can see that all four input variables are numeric and that the target class variable is a
string representing the iris flower species. This dataset contains duplicate rows that provides a
good basis for data cleaning.

The so-called iris flowers dataset is another standard machine learning dataset. The dataset
involves predicting the flower species given measurements of iris flowers in centimeters. It is a
multiclass classification problem. The number of observations for each class is balanced. There
are 150 observations with 4 input variables and 1 output variable. You can access the entire
dataset here:

 
Iris Flowers Dataset (iris.csv).3
 
Iris Flowers Dataset Description (iris.names).4
Review the contents of the file. The first few lines of the file should look as follows:

Columns that have a single observation or value are probably useless for modeling. These
columns or predictors are referred to zero-variance predictors as if we measured the variance
(average value from the mean), it would be zero.

When a predictor contains a single value, we call this a zero-variance predictor
because there truly is no variation displayed by the predictor.

— Page 96, Feature Engineering and Selection, 2019.

Here, a single value means that each row for that column has the same value. For example,
the column X1 has the value 1.0 for all rows in the dataset:

5.2.2 Iris Flowers Dataset

X1
1.0
1.0
1.0
1.0
1.0
...

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa ...

https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names

5.3 Identify Columns That Contain a Single Value

3
4

https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv
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Columns that have a single value for all rows do not contain any information for modeling.
Depending on the choice of data preparation and modeling algorithms, variables with a single
value can also cause errors or unexpected results. You can detect rows that have this property
using the unique() NumPy function that will report the number of unique values in each
column. The example below loads the oil-spill classification dataset that contains 50 variables
and summarizes the number of unique values for each column.

Listing 5.3: Example reporting the number of unique values in each column.

Running the example loads the dataset directly and prints the number of unique values for
each column. We can see that column index 22 only has a single value and should be removed.
0238
1297
2927
3933
4179
5375
6820
7618
8561
957
10 577
1159
1273
13 107
1453
1591
16 893
17 810
18 170
1953
2068
219
221
2392
249
258
269
27 308
28 447
29 392
30 107
3142
324
3345
34 141

# summarize the number of unique values for each column using
numpy from numpy import loadtxt
from numpy import unique
# load the dataset
data = loadtxt('oil-spill.csv', delimiter=',')
# summarize the number of unique values in each column
for i in range(data.shape[1]):
print(i, len(unique(data[:, i])))



5.3. Identify Columns That Contain a Single Value 42

Listing 5.5: Example a simpler approach to reporting the number of unique values in each
column.

Running the example, we get the same result, the column index, and the number of unique
values for each column.

Listing 5.4: Example output from reporting the number of unique values in each column.

A simpler approach is to use the nunique() Pandas function that does the hard work for
you. Below is the same example using the Pandas function.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

35 110
363
37
758
389
399
40
388
41 220
42
644
43
649
44
499
452
46
937
47 169
48
286
492

23
8
29
7
92
7
93
3
17
9
37
5
82
0
61
8
561
57
57
7
59
73
10
7
53
91
89
3
81
0
17
0

# summarize the number of unique values for each column using
numpy from pandas import read_csv
# load the dataset
df = read_csv('oil-spill.csv', header=None)
# summarize the number of unique values in each column
print(df.nunique())
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Listing 5.6: Example output from a simpler approach to reporting the number of unique values in
each column.

Variables or columns that have a single value should probably be removed from your dataset

... simply remove the zero-variance predictors.

— Page 96, Feature Engineering and Selection, 2019.

Columns are relatively easy to remove from a NumPy array or Pandas DataFrame. One
approach is to record all columns that have a single unique value, then delete them from the
Pandas DataFrame by calling the drop() function. The complete example is listed below.

2392
249
258
269
27 308
28 447
29 392
30 107
3142
324
3345
34 141
35 110
363
37 758
389
399
40 388
41 220
42 644
43 649
44 499
452
46 937
47 169
48 286
492
dtype: int64

# delete columns with a single unique value
from pandas import read_csv
# load the dataset
df = read_csv('oil-spill.csv', header=None)
print(df.shape)
# get number of unique values for each column
counts = df.nunique()
# record columns to delete
to_del = [i for i,v in enumerate(counts) if v == 1]

5.4 DeleteColumnsThatContainaSingleValue
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Listing 5.8: Example output from deleting columns that have a single value.
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Listing 5.7: Example of deleting columns that have a single value.

Running the example first loads the dataset and reports the number of rows and columns.
The number of unique values for each column is calculated, and those columns that have a
single unique value are identified. In this case, column index 22. The identified columns are
then removed from the DataFrame, and the number of rows and columns in the DataFrame are
reported to confirm the change.

In the previous section, we saw that some columns in the example dataset had very few unique
values. For example, there were columns that only had 2, 4, and 9 unique values. This might
make sense for ordinal or categorical variables. In this case, however, the dataset only contains
numerical variables. As such, only having 2, 4, or 9 unique numerical values in a column might
be surprising. We can refer to these columns or predictors as near-zero variance predictors, as
their variance is not zero, but a very small number close to zero.

... near-zero variance predictors or have the potential to have near zero variance
during the resampling process. These are predictors that have few unique values

(such as two values for binary dummy variables) and occur infrequently in the data.

— Pages 96-97, Feature Engineering and Selection, 2019.

These columns may or may not contribute to the skill of a model. We can’t assume that
they are useless to modeling.

Although near-zero variance predictors likely contain little valuable predictive infor-
mation, we may not desire to filter these out.

— Page 97, Feature Engineering and Selection, 2019.

Depending on the choice of data preparation and modeling algorithms, variables with very
few numerical values can also cause errors or unexpected results. For example, I have seenthem
cause errors when using power transforms for data preparation and when fitting linear models
that assume a sensible data probability distribution. To help highlight columns of this type,
you can calculate the number of unique values for each variable as a percentage of the total
number of rows in the dataset. Let’s do this manually using NumPy. The complete example is
listed below.

(937, 50)
[22]
(937, 49)

print(to_del)
# drop useless columns
df.drop(to_del, axis=1, inplace=True)
print(df.shape)

5.5 Consider Columns That Have Very Few Values
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Listing 5.9: Example of reporting the variance of each variable.

Running the example reports the column index and the number of unique values for each
column, followed by the percentage of unique values out of all rows in the dataset. Here, we can
see that some columns have a very low percentage of unique values, such as below 1 percent.

45

0, 238, 25.4% 1,
297, 31.7% 2,
927, 98.9% 3,
933, 99.6% 4,
179, 19.1% 5,
375, 40.0% 6,
820, 87.5% 7,
618, 66.0% 8,
561, 59.9% 9,
57, 6.1%
10, 577, 61.6%
11, 59, 6.3% 12,
73, 7.8% 13,
107, 11.4% 14,
53, 5.7% 15, 91,
9.7% 16, 893,
95.3% 17, 810,
86.4% 18, 170,
18.1% 19, 53,
5.7% 20, 68,
7.3% 21, 9, 1.0%
22, 1, 0.1%
23, 92, 9.8% 24,
9, 1.0%
25, 8, 0.9%
26, 9, 1.0%
27, 308, 32.9%
28, 447, 47.7%
29, 392, 41.8%
30, 107, 11.4%
31, 42, 4.5% 32,
4, 0.4%
33, 45, 4.8%
34, 141, 15.0%
35, 110, 11.7%
36, 3, 0.3%
37, 758, 80.9%
38, 9, 1.0%

# summarize the percentage of unique values for each column using
numpy from numpy import loadtxt
from numpy import unique
# load the dataset
data = loadtxt('oil-spill.csv', delimiter=',')
# summarize the number of unique values in each column
for i in range(data.shape[1]):
num = len(unique(data[:, i]))
percentage = float(num) / data.shape[0] * 100
print('%d, %d, %.1f%%' % (i, num, percentage))
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Listing 5.12: Example output from reporting on columns with low variance.
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Listing 5.10: Example output from reporting the variance of each variable.

We can update the example to only summarize those variables that have unique values that
are less than 1 percent of the number of rows.

Listing 5.11: Example of reporting on columns with low variance.

Running the example, we can see that 11 of the 50 variables have numerical variables that
have unique values that are less than 1 percent of the number of rows. This does not mean that
these rows and columns should be deleted, but they require further attention. For example:

 
Perhaps the unique values can be encoded as ordinal values?
 
Perhaps the unique values can be encoded as categorical values?
 
Perhaps compare model skill with each variable removed from the dataset?21, 9, 1.0%
22, 1, 0.1%
24, 9, 1.0%
25, 8, 0.9%
26, 9, 1.0%
32, 4, 0.4%
36, 3, 0.3%
38, 9, 1.0%
39, 9, 1.0%
45, 2, 0.2%
49, 2, 0.2%

39, 9, 1.0%
40, 388, 41.4%
41, 220, 23.5%
42, 644, 68.7%
43, 649, 69.3%
44, 499, 53.3%
45, 2, 0.2%
46, 937, 100.0%
47, 169, 18.0%
48, 286, 30.5%
49, 2, 0.2%

# summarize the percentage of unique values for each column using
numpy from numpy import loadtxt
from numpy import unique
# load the dataset
data = loadtxt('oil-spill.csv', delimiter=',')
# summarize the number of unique values in each column
for i in range(data.shape[1]):
num = len(unique(data[:, i]))
percentage = float(num) / data.shape[0] * 100
if percentage < 1:
print('%d, %d, %.1f%%' % (i, num, percentage))



Listing 5.15: Example of how to configure and apply the

Listing 5.14: Example output from removing columns with low variance.

to data.
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For example, if we wanted to delete all 11 columns with unique values less than 1 percent of
rows; the example below demonstrates this.

Another approach to the problem of removing columns with few unique values is to consider
the variance of the column. Recall that the variance is a statistic calculated on a variable as the

average squared difference of values in the sample from the mean. The variance can be used as a
filter for identifying columns to be removed from the dataset. A column that has a single value

has a variance of 0.0, and a column that has very few unique values may have a small variance.
The VarianceThreshold class from the scikit-learn library supports this as a type of feature

selection. An instance of the class can be created and we can specify the threshold argument,
which defaults to 0.0 to remove columns with a single value. It can then be fit and applied

to a dataset by calling the fit transform() function to create a transformed version of the
dataset where the columns that have a variance lower than the threshold have been removed

automatically.

Listing 5.13: Example of removing columns with low variance.

Running the example first loads the dataset and reports the number of rows and columns.
The number of unique values for each column is calculated, and those columns that have a
number of unique values less than 1 percent of the rows are identified. In this case, 11 columns.
The identified columns are then removed from the DataFrame, and the number of rows and
columns in the DataFrame are reported to confirm the change.

...
# define the transform
transform = VarianceThreshold()
# transform the input data
X_sel = transform.fit_transform(X)

(937, 50)
[21, 22, 24, 25, 26, 32, 36, 38, 39, 45, 49] (937, 39)

# delete columns where number of unique values is less than 1% of the rows
from pandas import read_csv
# load the dataset
df = read_csv('oil-spill.csv', header=None)
print(df.shape)
# get number of unique values for each column
counts = df.nunique()
# record columns to delete
to_del = [i for i,v in enumerate(counts) if (float(v)/df.shape[0]*100) < 1]
print(to_del)
# drop useless columns
df.drop(to_del, axis=1, inplace=True)
print(df.shape)

VarianceThreshold

5.6 Remove Columns That Have A Low Variance
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We can demonstrate this on the oil spill dataset as follows:

Listing 5.19: Example of evaluating the effect of different variance thresholds.

Listing 5.18: Example of defining variance thresholds to consider.

We can then report the number of features in the transformed dataset for each given
threshold.
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Listing 5.16: Example of removing columns that have a low variance.

Running the example first loads the dataset, then applies the transform to remove all columns
with a variance of 0.0. The shape of the dataset is reported before and after the transform, and
we can see that the single column where all values are the same has been removed.

Listing 5.17: Example output from removing columns that have a low variance.

We can expand this example and see what happens when we use different thresholds. We
can define a sequence of thresholds from 0.0 to 0.5 with a step size of 0.05, e.g. 0.0, 0.05, 0.1,
etc.

(937, 49) (937,)
(937, 48)

...
# define thresholds to check
thresholds = arange(0.0, 0.55, 0.05)

...
# apply transform with each threshold
results = list()
for t in thresholds:
# define the transform
transform = VarianceThreshold(threshold=t)
# transform the input data
X_sel = transform.fit_transform(X)
# determine the number of input features
n_features = X_sel.shape[1]

print('>Threshold=%.2f, Features=%d' % (t, n_features))
# store the result
results.append(n_features)

# example of applying the variance threshold for feature selection
from pandas import read_csv
from sklearn.feature_selection import VarianceThreshold
# load the dataset
df = read_csv('oil-spill.csv', header=None)
# split data into inputs and outputs
data = df.values
X = data[:, :-1]
y = data[:, -1]
print(X.shape, y.shape)
# define the transform
transform = VarianceThreshold()
# transform the input data
X_sel = transform.fit_transform(X)
print(X_sel.shape)
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Finally, we can plot the results. Tying this together, the complete example of comparing
variance threshold to the number of selected features is listed below.

Listing 5.21: Example output from reviewing the effect of different variance thresholds on the

Listing 5.20: Example of reviewing the effect of different variance thresholds on the number of
features in the transformed dataset.

Running the example first loads the data and confirms that the raw dataset has 49 columns.
Next, the VarianceThreshold is applied to the raw dataset with values from 0.0 to 0.5 and the
number of remaining features after the transform is applied are reported. We can see that the
number of features in the dataset quickly drops from 49 in the unchanged data down to 35 with
a threshold of 0.15. It later drops to 31 (18 columns deleted) with a threshold of 0.5.
(937, 49) (937,)
>Threshold=0.00, Features=48
>Threshold=0.05, Features=37
>Threshold=0.10, Features=36
>Threshold=0.15, Features=35
>Threshold=0.20, Features=35
>Threshold=0.25, Features=35
>Threshold=0.30, Features=35
>Threshold=0.35, Features=35
>Threshold=0.40, Features=35
>Threshold=0.45, Features=33
>Threshold=0.50, Features=31

# explore the effect of the variance thresholds on the number of selected features
from numpy import arange
from pandas import read_csv
from sklearn.feature_selection import VarianceThreshold
from matplotlib import pyplot
# load the dataset
df = read_csv('oil-spill.csv', header=None)
# split data into inputs and outputs
data = df.values
X = data[:, :-1]
y = data[:, -1]
print(X.shape, y.shape)
# define thresholds to check
thresholds = arange(0.0, 0.55, 0.05)
# apply transform with each threshold
results = list()
for t in thresholds:
# define the transform
transform = VarianceThreshold(threshold=t)
# transform the input data
X_sel = transform.fit_transform(X)
# determine the number of input features
n_features = X_sel.shape[1]
print('>Threshold=%.2f, Features=%d' % (t, n_features))
# store the result
results.append(n_features)
# plot the threshold vs the number of selected features
pyplot.plot(thresholds, results)
pyplot.show()



Figure 5.1: Line Plot of Variance Threshold Versus Number of Selected Features.
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number of features in the transformed dataset.

A line plot is then created showing the relationship between the threshold and the number
of features in the transformed dataset. We can see that even with a small threshold between
0.15 and 0.4, that a large number of features (14) are removed immediately.

Rows that have identical data are could be useless to the modeling process, if not dangerously
misleading during model evaluation. Here, a duplicate row is a row where each value in each
column for that row appears in identically the same order (same column values) in another row.

... if you have used raw data that may have duplicate entries, removing duplicate
data will be an important step in ensuring your data can be accurately used.

— Page 173, Data Wrangling with Python, 2016.

From a probabilistic perspective, you can think of duplicate data as adjusting the priors for
a class label or data distribution. This may help an algorithm like Naive Bayes if you wish to
purposefully bias the priors. Typically, this is not the case and machine learning algorithms

5.7 Identify Rows That Contain Duplicate Data



Listing 5.23: Example output from identifying and reporting duplicate rows.

Rows of duplicate data should probably be deleted from your dataset prior to modeling.

Listing 5.22: Example of identifying and reporting duplicate rows.

Running the example first loads the dataset, then calculates row duplicates. First, the
presence of any duplicate rows is reported, and in this case, we can see that there are duplicates
(True). Then all duplicate rows are reported. In this case, we can see that three duplicate rows
that were identified are printed.
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will perform better by identifying and removing rows with duplicate data. From an algorithm
evaluation perspective, duplicate rows will result in misleading performance. For example, if
you are using a train/test split or k-fold cross-validation, then it is possible for a duplicate row
or rows to appear in both train and test datasets and any evaluation of the model on these
rows will be (or should be) correct. This will result in an optimistically biased estimate of
performance on unseen data.

Data deduplication, also known as duplicate detection, record linkage, record match-
ing, or entity resolution, refers to the process of identifying tuples in one or more

relations that refer to the same real-world entity.

— Page 47, Data Cleaning, 2019.

If you think this is not the case for your dataset or chosen model, design a controlled
experiment to test it. This could be achieved by evaluating model skill with the raw dataset and
the dataset with duplicates removed and comparing performance. Another experiment might
involve augmenting the dataset with different numbers of randomly selected duplicate examples.
The Pandas function duplicated() will report whether a given row is duplicated or not. All
rows are marked as either False to indicate that it is not a duplicate or True to indicate that
it is a duplicate. If there are duplicates, the first occurrence of the row is marked False (by
default), as we might expect. The example below checks for duplicates.

True
0 1 2 3  4
34 4.9 3.1 1.5 0.1 Iris-setosa 37 4.9 3.1 1.5
0.1 Iris-setosa 142 5.8 2.7 5.1 1.9 Iris-
virginica

# locate rows of duplicate data
from pandas import read_csv
# load the dataset
df = read_csv('iris.csv', header=None) #
calculate duplicates
dups = df.duplicated()
# report if there are any duplicates
print(dups.any())
# list all duplicate rows print(df[dups])

5.8 DeleteRowsThatContainDuplicateData



, 2019.

, 2016.

, 2019.

Listing 5.25: Example output from removing duplicate rows.

This section provides more resources on the topic if you are looking to go deeper.

Listing 5.24: Example of removing duplicate rows.

Running the example first loads the dataset and reports the number of rows and columns.
Next, the rows of duplicated data are identified and removed from the DataFrame. Then the
shape of the DataFrame is reported to confirm the change.
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If your dataset simply has duplicate rows, there is no need to worry about preserving
the data; it is already a part of the finished dataset and you can merely remove or

drop these rows from your cleaned data.

— Page 186, Data Wrangling with Python, 2016.

There are many ways to achieve this, although Pandas provides the drop duplicates()
function that achieves exactly this. The example below demonstrates deleting duplicate rows
from a dataset.

Data Cleaning

  Data Wrangling with Python

Feature Engineering and Selection

https://amzn.to/2SARxFG

https://amzn.to/35DoLcU

https://amzn.to/2Yvcupn

numpy.unique API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html

(150, 5)
(147, 5)

# delete rows of duplicate data from the dataset
from pandas import read_csv
# load the dataset
df = read_csv('iris.csv', header=None)
print(df.shape)
# delete duplicate rows
df.drop_duplicates(inplace=True)
print(df.shape)

5.9 Further Reading

5.9.1
 

5.9.2 APIs
 

Bo oks

 

https://amzn.to/2SARxFG
https://amzn.to/35DoLcU
https://amzn.to/2Yvcupn
https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html


5.10. Summary

In the next section, we will explore how to identify and remove outliers from data variables.
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In this tutorial, you discovered basic data cleaning you should always perform on your dataset.
Specifically, you learned:

 
How to identify and remove column variables that only have a single value.
 
How to identify and consider column variables with very few unique values.
 
How to identify and remove rows that contain duplicate observations.

 

 

 

 

pandas.DataFrame.nunique API.
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame. nunique.html

pandas.DataFrame.drop API.
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
drop.html

pandas.DataFrame.duplicated API.
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
duplicated.html

pandas.DataFrame.drop duplicates API.
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
drop_duplicates.html

5.10 Summary

5.10.1 Next

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nunique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nunique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nunique.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.duplicated.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.duplicated.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.duplicated.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html


Chapter 6

Outlier Identification and Removal

This tutorial is divided into five parts; they are:

1. What are Outliers?

2. Test Dataset

3. Standard Deviation Method

4. Interquartile Range Method

5. Automatic Outlier Detection

An outlier is an observation that is unlike the other observations. They are rare, distinct, or do
not fit in some way.

We will generally define outliers as samples that are exceptionally far from the
mainstream of the data.
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When modeling, it is important to clean the data sample to ensure that the observations best
represent the problem. Sometimes a dataset can contain extreme values that are outside the
range of what is expected and unlike the other data. These are called outliers and often machine
learning modeling and model skill in general can be improved by understanding and even
removing these outlier values. In this tutorial, you will discover outliers and how to identify and
remove them from your machine learning dataset. After completing this tutorial, you will know:

 
That an outlier is an unlikely observation in a dataset and may have one of many causes.

 
How to use simple univariate statistics like standard deviation and interquartile range to

identify and remove outliers from a data sample.

 
How to use an outlier detection model to identify and remove rows from a training dataset

in order to lift predictive modeling performance.6.1 TutorialOverview

6.2 WhatareOutliers?



Before we look at outlier identification methods, let’s define a dataset we can use to test the
methods. We will generate a population 10,000 random numbers drawn from a Gaussian
distribution with a mean of 50 and a standard deviation of 5. Numbers drawn from a Gaussian
distribution will have outliers. That is, by virtue of the distribution itself, there will be a few
values that will be a long way from the mean, rare values that we can identify as outliers.

We will use the randn() function to generate random Gaussian values with a mean of 0 and
a standard deviation of 1, then multiply the results by our own standard deviation and add the
mean to shift the values into the preferred range. The pseudorandom number generator is
seeded to ensure that we get the same sample of numbers each time the code is run.
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— Page 33, Applied Predictive Modeling, 2013.

Outliers can have many causes, such as:

 
Measurement or input error.
 
Data corruption.
 
True outlier observation.

There is no precise way to define and identify outliers in general because of the specifics of
each dataset. Instead, you, or a domain expert, must interpret the raw observations and decide
whether a value is an outlier or not.

Even with a thorough understanding of the data, outliers can be hard to define. [...]
Great care should be taken not to hastily remove or change values, especially if the

sample size is small.

— Page 33, Applied Predictive Modeling, 2013.

Nevertheless, we can use statistical methods to identify observations that appear to be rare
or unlikely given the available data.

Identifying outliers and bad data in your dataset is probably one of the most difficult
parts of data cleanup, and it takes time to get right. Even if you have a deep

understanding of statistics and how outliers might affect your data, it’s always a
topic to explore cautiously.

— Page 167, Data Wrangling with Python, 2016.

This does not mean that the values identified are outliers and should be removed. But, the
tools described in this tutorial can be helpful in shedding light on rare events that may require
a second look. A good tip is to consider plotting the identified outlier values, perhaps in the
context of non-outlier values to see if there are any systematic relationship or pattern to the
outliers. If there is, perhaps they are not outliers and can be explained, or perhaps the outliers
themselves can be identified more systematically.

6.3 Test Dataset



6.4. Standard Deviation Method

Listing 6.2: Example output from summarizing a synthetic dataset with outliers.
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If we know that the distribution of values in the sample is Gaussian or Gaussian-like, we can use
the standard deviation of the sample as a cut-off for identifying outliers. The Gaussian
distribution has the property that the standard deviation from the mean can be used to reliably
summarize the percentage of values in the sample. For example, within one standard deviation
of the mean will cover 68 percent of the data. So, if the mean is 50 and the standard deviation is
5, as in the test dataset above, then all data in the sample between 45 and 55 will account for
about 68 percent of the data sample. We can cover more of the data sample if we expand the
range as follows:

 
1 Standard Deviation from the Mean: 68 percent.
 
2 Standard Deviations from the Mean: 95 percent.
 
3 Standard Deviations from the Mean: 99.7 percent.

A value that falls outside of 3 standard deviations is part of the distribution, but it is an
unlikely or rare event at approximately 1 in 370 samples. Three standard deviations from the
mean is a common cut-off in practice for identifying outliers in a Gaussian or Gaussian-like
distribution. For smaller samples of data, perhaps a value of 2 standard deviations (95 percent)
can be used, and for larger samples, perhaps a value of 4 standard deviations (99.9 percent) can
be used.

Given mu and sigma, a simple way to identify outliers is to compute a z-score for
every xi, which is defined as the number of standard deviations away xi is from

the mean [...] Data values that have a z-score sigma greater than a threshold, for
example, of three, are declared to be outliers.

Listing 6.1: Example of a synthetic dataset with outliers.

Running the example generates the sample and then prints the mean and standard deviation.
As expected, the values are very close to the expected values.
mean=50.049 stdv=4.994

# generate gaussian data
from numpy.random import seed
from numpy.random import randn
from numpy import mean
from numpy import std
# seed the random number generator
seed(1)
# generate univariate observations
data = 5 * randn(10000) + 50
# summarize
print('mean=%.3f stdv=%.3f' % (mean(data), std(data)))

6.4 Standard Deviation Method



Listing 6.3: Example of estimating the lower and upper bounds of the data.

We can then identify outliers as those examples that fall outside of the defined lower and
upper limits.

Listing 6.4: Example of identifying outliers using the limits on the data.

Alternately, we can filter out those values from the sample that are not within the defined
limits.

Listing 6.5: Example of removing outliers from the data.

We can put this all together with our sample dataset prepared in the previous section. The
complete example is listed below.
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— Page 19, Data Cleaning, 2019.

Let’s make this concrete with a worked example. Sometimes, the data is standardized
first (e.g. to a Z-score with zero mean and unit variance) so that the outlier detection can be
performed using standard Z-score cut-off values. This is a convenience and is not required in
general, and we will perform the calculations in the original scale of the data here to make things
clear. We can calculate the mean and standard deviation of a given sample, then calculate the
cut-off for identifying outliers as more than 3 standard deviations from the mean.

...
# identify outliers
outliers = [x for x in data if x < lower or x > upper]

...
# calculate summary statistics
data_mean, data_std = mean(data), std(data)
# define outliers
cut_off = data_std * 3
lower, upper = data_mean - cut_off, data_mean + cut_off

# identify outliers with standard deviation
from numpy.random import seed
from numpy.random import randn
from numpy import mean
from numpy import std
# seed the random number generator
seed(1)
# generate univariate observations
data = 5 * randn(10000) + 50
# calculate summary statistics
data_mean, data_std = mean(data), std(data)
# define outliers
cut_off = data_std * 3
lower, upper = data_mean - cut_off, data_mean + cut_off
# identify outliers
outliers = [x for x in data if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
# remove outliers

...
# remove outliers
outliers_removed = [x for x in data if x > lower and x < upper]
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Listing 6.6: Example of a identifying and removing outliers using the standard deviation.

Running the example will first print the number of identified outliers and then the number
of observations that are not outliers, demonstrating how to identify and filter out outliers
respectively.

Listing 6.7: Example output from identifying and removing outliers using the standard deviation.

So far we have only talked about univariate data with a Gaussian distribution, e.g. a single
variable. You can use the same approach if you have multivariate data, e.g. data with multiple
variables, each with a different Gaussian distribution. You can imagine bounds in two dimensions
that would define an ellipse if you have two variables. Observations that fall outside of the
ellipse would be considered outliers. In three dimensions, this would be an ellipsoid, and so on
into higher dimensions. Alternately, if you knew more about the domain, perhaps an outlier
may be identified by exceeding the limits on one or a subset of the data dimensions.

Not all data is normal or normal enough to treat it as being drawn from a Gaussian distribution. A
good statistic for summarizing a non-Gaussian distribution sample of data is the Interquartile
Range, or IQR for short. The IQR is calculated as the difference between the 75th and the 25th
percentiles of the data and defines the box in a box and whisker plot. Remember that percentiles
can be calculated by sorting the observations and selecting values at specific indices. The 50th
percentile is the middle value, or the average of the two middle values for an even number of
examples. If we had 10,000 samples, then the 50th percentile would be the average of the
5000th and 5001st values.

We refer to the percentiles as quartiles (quart meaning 4) because the data is divided into
four groups via the 25th, 50th and 75th values. The IQR defines the middle 50 percent of the
data, or the body of the data.

Statistics-based outlier detection techniques assume that the normal data points
would appear in high probability regions of a stochastic model, while outliers would

occur in the low probability regions of a stochastic model.

— Page 12, Data Cleaning, 2019.

The IQR can be used to identify outliers by defining limits on the sample values that are a
factor k of the IQR below the 25th percentile or above the 75th percentile. The common value
for the factor k is the value 1.5. A factor k of 3 or more can be used to identify values that are
extreme outliers or far outs when described in the context of box and whisker plots. On a box
and whisker plot, these limits are drawn as fences on the whiskers (or the lines) that are drawn
from the box. Values that fall outside of these values are drawn as dots. We can calculate the
percentiles of a dataset using the percentile() NumPy function that takes the dataset and
specification of the desired percentile. The IQR can then be calculated as the differencebetween
the 75th and 25th percentiles.

Identified outliers: 29
Non-outlier observations: 9971

outliers_removed = [x for x in data if x >= lower and x <= upper]
print('Non-outlier observations: %d' % len(outliers_removed))

6.5 Interquartile Range Method



6.5. Interquartile Range Method

Listing 6.10: Example of identifying outliers using the limits on the data.

We can also use the limits to filter out the outliers from the dataset.

Listing 6.9: Example of calculating lower and upper bounds using the IQR.

We can then use these limits to identify the outlier values.

Listing 6.12: Example of a identifying and removing outliers using the IQR.
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Listing 6.11: Example of removing outliers from the data.

We can tie all of this together and demonstrate the procedure on the test dataset. The
complete example is listed below.

Listing 6.8: Example of calculating quartiles on the data.

We can then calculate the cutoff for outliers as 1.5 times the IQR and subtract this cut-off
from the 25th percentile and add it to the 75th percentile to give the actual limits on the data.
...
# calculate the outlier cutoff
cut_off = iqr * 1.5
lower, upper = q25 - cut_off, q75 + cut_off

...
# calculate interquartile range
q25, q75 = percentile(data, 25), percentile(data, 75) iqr =
q75 - q25

...
# identify outliers
outliers = [x for x in data if x < lower or x > upper]

...
# remove outliers
outliers_removed = [x for x in data if x > lower and x < upper]

# identify outliers with interquartile range
from numpy.random import seed
from numpy.random import randn
from numpy import percentile
# seed the random number generator
seed(1)
# generate univariate observations
data = 5 * randn(10000) + 50
# calculate interquartile range
q25, q75 = percentile(data, 25), percentile(data, 75)
iqr = q75 - q25
print('Percentiles: 25th=%.3f, 75th=%.3f, IQR=%.3f' % (q25, q75, iqr)) #
calculate the outlier cutoff
cut_off = iqr * 1.5
lower, upper = q25 - cut_off, q75 + cut_off
# identify outliers
outliers = [x for x in data if x < lower or x > upper] print('Identified outliers:
%d' % len(outliers))
# remove outliers
outliers_removed = [x for x in data if x >= lower and x <= upper]
print('Non-outlier observations: %d' % len(outliers_removed))



Listing 6.13: Example output from identifying and removing outliers using the IQR.

The approach can be used for multivariate data by calculating the limits on each variable
in the dataset in turn, and taking outliers as observations that fall outside of the rectangle or
hyp er-rectangle.
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Running the example first prints the identified 25th and 75th percentiles and the calcu-
lated IQR. The number of outliers identified is printed followed by the number of non-outlier
observations.

In machine learning, an approach to tackling the problem of outlier detection is one-class
classification.

A one-class classifier aims at capturing characteristics of training instances, in order
to be able to distinguish between them and potential outliers to appear.

— Page 139, Learning from Imbalanced Data Sets, 2018.

A simple approach to identifying outliers is to locate those examples that are far from the
other examples in the multi-dimensional feature space. This can work well for feature spaces
with low dimensionality (few features), although it can become less reliable as the number of
features is increased, referred to as the curse of dimensionality. The local outlier factor, or
LOF for short, is a technique that attempts to harness the idea of nearest neighbors for outlier
detection. Each example is assigned a scoring of how isolated or how likely it is to be outliers
based on the size of its local neighborhood. Those examples with the largest score are more
likely to be outliers. The scikit-learn library provides an implementation of this approach in the
LocalOutlierFactor class.

We can demonstrate the LocalOutlierFactor method on a predictive modeling dataset.
We will use the Boston housing regression problem that has 13 inputs and one numerical target
and requires learning the relationship between suburb characteristics and house prices. You can
learn more about the dataset here:

BostonHousingDataset(1 housing.csv).

BostonHousingDatasetDescription(housin2 g.names).

Looking in the dataset, you should see that all variables are numeric.

Percentiles: 25th=46.685, 75th=53.359, IQR=6.674
Identified outliers: 81
Non-outlier observations: 9919

0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0,15.30,396.90,4.98,24.00
0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0,17.80,396.90,9.14,21.60
0.02729,0.00,7.070,0,0.4690,7.1850,61.10,4.9671,2,242.0,17.80,392.83,4.03,34.70
0.03237,0.00,2.180,0,0.4580,6.9980,45.80,6.0622,3,222.0,18.70,394.63,2.94,33.40

1
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
2

https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.names

6.6 AutomaticOutlierDetection

https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.names
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Listing 6.14: Sample of the first few rows of the housing dataset.

First, we can load the dataset as a NumPy array, separate it into input and output variables
and then split it into train and test datasets. The complete example is listed below.

Listing 6.15: Example of loading and summarizing the regression dataset.

Running the example loads the dataset and first reports the total number of rows and
columns in the dataset, then the number of examples allocated to the train and test datasets.

Listing 6.16: Sample output from loading and summarizing the regression dataset.

It is a regression predictive modeling problem, meaning that we will be predicting a numeric
value. All input variables are also numeric. In this case, we will fit a linear regression algorithm
and evaluate model performance by training the model on the test dataset and making a
prediction on the test data and evaluate the predictions using the mean absolute error (MAE).
The complete example of evaluating a linear regression model on the dataset is listed below.

(506, 13) (506,)
(339, 13) (167, 13) (339,) (167,)

0.06905,0.00,2.180,0,0.4580,7.1470,54.20,6.0622,3,222.0,18.70,396.90,5.33,36.20 ...

# load and summarize the dataset
from pandas import read_csv
from sklearn.model_selection import train_test_split
# load the dataset
df = read_csv('housing.csv', header=None)
# retrieve the array
data = df.values
# split into input and output elements
X, y = data[:, :-1], data[:, -1]
# summarize the shape of the dataset
print(X.shape, y.shape)
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) #
summarize the shape of the train and test sets
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

# evaluate model on the raw dataset
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
# load the dataset
df = read_csv('housing.csv', header=None)
# retrieve the array
data = df.values
# split into input and output elements
X, y = data[:, :-1], data[:, -1]
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # fit the
model
model = LinearRegression()
model.fit(X_train, y_train)
# evaluate the model
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Listing 6.19: Example of identifying outliers automatically.

We can then use these predictions to remove all outliers from the training dataset.
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Listing 6.20: Example of removing identified outliers from the dataset.

We can then fit and evaluate the model as per normal. The updated example of evaluating
a linear regression model with outliers deleted from the training dataset is listed below.

Listing 6.17: Example of evaluating a model on the regression dataset.

Running the example fits and evaluates the model then reports the MAE.

Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the model achieved a MAE of about 3.417.

Listing 6.18: Sample output from evaluating a model on the regression dataset.

Next, we can try removing outliers from the training dataset. The expectation is that the
outliers are causing the linear regression model to learn a bias or skewed understanding of the
problem, and that removing these outliers from the training set will allow a more effective model
to be learned. We can achieve this by defining the LocalOutlierFactor model and using it to
make a prediction on the training dataset, marking each row in the training dataset as normal
(1) or an outlier (-1). We will use the default hyperparameters for the outlier detection model,
although it is a good idea to tune the configuration to the specifics of your dataset.

MAE: 3.417

yhat = model.predict(X_test)
# evaluate predictions
mae = mean_absolute_error(y_test,
yhat) print('MAE: %.3f' % mae)

...
# identify outliers in the training
dataset lof = LocalOutlierFactor()
yhat = lof.fit_predict(X_train)

...
# select all rows that are not outliers
mask = yhat != -1
X_train, y_train = X_train[mask, :], y_train[mask]

# evaluate model on training dataset with outliers
removed from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import LocalOutlierFactor
from sklearn.metrics import mean_absolute_error
# load the dataset
df = read_csv('housing.csv', header=None)
# retrieve the array
data = df.values
# split into input and output elements



6.7. Further Reading

This section provides more resources on the topic if you are looking to go deeper.
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Listing 6.22: Sample output from evaluating a model on the regression dataset with outliers
removed from the training dataset.

The Scikit-Learn library provides other outlier detection algorithms that can be used in the
same way such as the IsolationForest algorithm.

Listing 6.21: Example of evaluating a model on the regression dataset with outliers removed
from the training dataset.

Running the example fits and evaluates the linear regression model with outliers deleted
from the training dataset.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

Firstly, we can see that the number of examples in the training dataset has been reduced
from 339 to 305, meaning 34 rows containing outliers were identified and deleted. We can also
see a reduction in MAE from about 3.417 by a model fit on the entire training dataset, to about
3.356 on a model fit on the dataset with outliers removed.

(339, 13) (339,)
(305, 13) (305,)
MAE: 3.356

X, y = data[:, :-1], data[:, -1]
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
# summarize the shape of the training dataset
print(X_train.shape, y_train.shape)
# identify outliers in the training dataset
lof = LocalOutlierFactor()
yhat = lof.fit_predict(X_train)
# select all rows that are not outliers
mask = yhat != -1
X_train, y_train = X_train[mask, :], y_train[mask]
# summarize the shape of the updated training dataset
print(X_train.shape, y_train.shape)
# fit the model
model = LinearRegression()
model.fit(X_train, y_train)
# evaluate the model
yhat = model.predict(X_test)
# evaluate predictions
mae = mean_absolute_error(y_test, yhat)
print('MAE: %.3f' % mae)

6.7 Further Reading



6.7. Further Reading

Interquartile range.

NumPy API.

, 2019.

NumPy API.

  Outlier on Wikipedia.

  Box plot on Wikipedia.

68-95-99.7 rule on Wikipedia.

  Anomaly detection on Wikipedia.

, 2013.

, 2016.

, 2018.

API.

API.
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6.8. Summary

In the next section, we will explore how to identify and mark missing values in a dataset.
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In this tutorial, you discovered outliers and how to identify and remove them from your machine
learning dataset. Specifically, you learned:

 
That an outlier is an unlikely observation in a dataset and may have one of many causes.

 
How to use simple univariate statistics like standard deviation and interquartile range to

identify and remove outliers from a data sample.

 
How to use an outlier detection model to identify and remove rows from a training dataset

in order to lift predictive modeling performance.

6.8 Summary

6.8.1 Next



Chapter 7

How to Mark and Remove Missing
Data

This tutorial is divided into 4 parts; they are:

1. Diabetes Dataset

2. Mark Missing Values

3. Missing Values Cause Problems

4. Remove Rows With Missing Values

As the basis of this tutorial, we will use the so-called diabetes dataset that has been widely
studied as a machine learning dataset since the 1990s. The dataset classifies patient data as
either an onset of diabetes within five years or not. There are 768 examples and eight input
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Real-world data often has missing values. Data can have missing values for a number of reasons
such as observations that were not recorded and data corruption. Handling missing data is
important as many machine learning algorithms do not support data with missing values. In this
tutorial, you will discover how to handle missing data for machine learning with Python.
Specifically, after completing this tutorial you will know:

 
How to mark invalid or corrupt values as missing in your dataset.
 

How to confirm that the presence of marked missing values causes problems for learning
algorithms.

 
How to remove rows with missing data from your dataset and evaluate a learning algorithm

on the transformed dataset.

Let’s get started.7.1 TutorialOverview

7.2 DiabetesDataset



Listing 7.2: Example of loading and calculating summary statistics for each variable.

We can load the dataset as a Pandas DataFrame and print summary statistics on each
attribute.

7.3.MarkMissingValues 67

variables. It is a binary classification problem. A naive model can achieve an accuracy of about
65 percent on this dataset. A good score is about 77 percent. We will aim for this region, but
note that the models in this tutorial are not optimized; they are designed to demonstrate feature
selection schemes. You can learn more about the dataset here:
 
Diabetes Dataset File (pima-indians-diabetes.csv).1
 
Diabetes Dataset Details (pima-indians-diabetes.names).2
Looking at the data, we can see that all nine input variables are numerical.

Listing 7.1: Example of a column that contains a single value.

This dataset is known to have missing values. Specifically, there are missing observations for
some columns that are marked as a zero value. We can corroborate this by the definition of
those columns and the domain knowledge that a zero value is invalid for those measures, e.g. a
zero for body mass index or blood pressure is invalid.

Most data has missing values, and the likelihood of having missing values increases with the size
of the dataset.

Missing data are not rare in real data sets. In fact, the chance that at least one data
point is missing increases as the data set size increases.

— Page 187, Feature Engineering and Selection, 2019.

In this section, we will look at how we can identify and mark values as missing. We can use
plots and summary statistics to help identify missing or corrupt data.

6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1
...

# load and summarize the dataset
from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv',
header=None) # summarize the dataset
print(dataset.describe())

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima- indians- diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima- indians- diabetes.names
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https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
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Listing 7.4: Example of loading and summarizing the first few rows of the dataset.

Running the example, we can clearly see 0 values in the columns 2, 3, 4, and 5.
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Listing 7.3: Example output from calculating summary statistics for each variable.

This is useful. We can see that there are columns that have a minimum value of zero (0).
On some columns, a value of zero does not make sense and indicates an invalid or missing value.

Missing values are frequently indicated by out-of-range entries; perhaps a negative
number (e.g., -1) in a numeric field that is normally only positive, or a 0 in a numeric

field that can never normally be 0.

— Page 62, Data Mining: Practical Machine Learning Tools and Techniques, 2016.

Specifically, the following columns have an invalid zero minimum value:

 
1: Plasma glucose concentration
 
2: Diastolic blood pressure
 
3: Triceps skinfold thickness
 
4: 2-Hour serum insulin
 
5: Body mass index

Let’s confirm this by looking at the raw data, the example prints the first 20 rows of data.

0
1
2
3
4
5
6
7

0 1 2 3
6  1 4 8
7 2  3 5
1  8 5
6 6  2 9
8  1 8 3
6 4  0
1 89 66 23 0
137 40 35 5 116
74 0
3 78 50 32 10
115 0 0

4  5  6 7 8
0 33.6 0.627 50 1
0 26.6 0.351 31 0
0 23.3 0.672 32 1

94 28.1 0.167 21 0
168 43.1 2.288 33 1

0 25.6 0.201 30 0
88 31.0 0.248 26 1
0 35.3 0.134 29 0

# load the dataset and review rows
from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv',
header=None) # summarize the first 20 rows of data
print(dataset.head(20))

012...678
count 768.000000 768.000000 768.000000 ... 768.000000 768.000000
768.000000 mean 3.845052120.894531 69.105469... 0.471876 33.240885
0.348958 std 3.369578 31.972618 19.355807... 0.331329 11.760232 0.476951 min
0.000000 0.000000 0.000000... 0.078000 21.000000 0.000000 25% 1.000000
99.000000 62.000000... 0.243750 24.000000 0.000000 50%
3.000000117.000000 72.000000... 0.372500 29.000000 0.000000 75%
6.000000140.250000 80.000000... 0.626250 41.000000 1.000000 max
17.000000199.000000122.000000... 2.420000 81.000000 1.000000
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Listing 7.6: Example of reporting the number of missing values in each column.

Running the example prints the following output:
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Listing 7.5: Example output from loading and summarizing the first few rows of the dataset.

We can get a count of the number of missing values on each of these columns. We can do
this by marking all of the values in the subset of the DataFrame we are interested in that have
zero values as True. We can then count the number of true values in each column.

Listing 7.7: Example output from reporting the number of missing values in each column.

We can see that columns 1, 2 and 5 have just a few zero values, whereas columns 3 and 4
show a lot more, nearly half of the rows. This highlights that different missing value strategies
may be needed for different columns, e.g. to ensure that there are still a sufficient number of
records left to train a predictive model.

When a predictor is discrete in nature, missingness can be directly encoded into the
predictor as if it were a naturally occurring category.

— Page 197, Feature Engineering and Selection, 2019.

In Python, specifically Pandas, NumPy and Scikit-Learn, we mark missing values as NaN.
Values with a NaN value are ignored from operations like sum, count, etc. We can mark values
as NaN easily with the Pandas DataFrame by using the replace() function on a subset of
the columns we are interested in. After we have marked the missing values, we can use the
isnull() function to mark all of the NaN values in the dataset as True and get a count of the
missing values for each column.

1
2
3
4
5

8
9
10
11
12
13
14
15
16
17
18
19

5
35

227
374

11

2 197 70 45 8
125 96 0 4 110
92 0 10 168 74
0 10 139 80 0 1
189 60 23 5
166 72 19
710000
0 118 84 47 7
107 74 0 1 103
30 38 1 115 70
30

543 30.5 0.158 53 1
0 0.0 0.232 54 1

0 37.6 0.191 30 0
0 38.0 0.537 34 1
0 27.1 1.441 57 0

846 30.1 0.398 59 1
175 25.8 0.587 51 1
0 30.0 0.484 32 1

230 45.8 0.551 31 1
0 29.6 0.254 31 1

83 43.3 0.183 33 0
96 34.6 0.529 32 1

# example of summarizing the number of missing values for each
variable from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv', header=None)
# count the number of missing values for each column
num_missing = (dataset[[1,2,3,4,5]] == 0).sum()
# report the results
print(num_missing)
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Listing 7.8: Example of marking missing values in the dataset.

Running the example prints the number of missing values in each column. We can see that
columns 1 to 5 have the same number of missing values as zero values identified above. This is
a sign that we have marked the identified missing values correctly.

Listing 7.10: Example of reviewing rows of data with missing values marked.

Running the example, we can clearly see NaN values in the columns 2, 3, 4 and 5. There are
only 5 missing values in column 1, so it is not surprising we did not see an example in the first
20 rows. It is clear from the raw data that marking the missing values had the intended effect.

Listing 7.9: Example output from marking missing values in the dataset.

This is a useful summary, as we want to confirm that we have not fooled ourselves somehow.
Below is the same example, except we print the first 20 rows of data.

0
1
2
3
4
5
6
7

0 0
1 5
235
3227
4374
511
6 0
7 0
8 0
d t y p e :  i n t 6 4

0 1 2 3 4 5 6 7  6  1 4 8 . 0
7 2 . 0  3 5 . 0  N a N
3 3 . 6  0 . 6 2 7  5 0  1
8 5 . 0  6 6 . 0  2 9 . 0
N a N  2 6 . 6  0 . 3 5 1
3 1  8  1 8 3 . 0  6 4 . 0
N a N  N a N  2 3 . 3
0 . 6 7 2  3 2  1  8 9 . 0
6 6 . 0  2 3 . 0  9 4 . 0
2 8 . 1  0 . 1 6 7  2 1  0
1 3 7 . 0  4 0 . 0  3 5 . 0
1 6 8 . 0  4 3 . 1  2 . 2 8 8
3 3  5  1 1 6 . 0  7 4 . 0
N a N  N a N  2 5 . 6
0 . 2 0 1  3 0  3  7 8 . 0
5 0 . 0  3 2 . 0  8 8 . 0
3 1 . 0  0 . 2 4 8  2 6  1 0

8
1
0
1
0
1
0
1
0

# example of marking missing values with nan values
from numpy import nan
from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv',
header=None) # replace '0' values with 'nan'
dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, nan)
# count the number of nan values in each column
print(dataset.isnull().sum())

# example of review data with missing values marked with a
nan from numpy import nan
from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv', header=None)
# replace '0' values with 'nan'
dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, nan)
# summarize the first 20 rows of data
print(dataset.head(20))
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Listing 7.11: Example output from reviewing rows of data with missing values marked.

Before we look at handling missing values, let’s first demonstrate that having missing values
in a dataset can cause problems.

Having missing values in a dataset can cause errors with some machine learning algorithms.

Missing values are common occurrences in data. Unfortunately, most predictive
modeling techniques cannot handle any missing values. Therefore, this problem

must be addressed prior to modeling.

— Page 203, Feature Engineering and Selection, 2019.

In this section, we will try to evaluate the Linear Discriminant Analysis (LDA) algorithm
on the dataset with missing values. This is an algorithm that does not work when there are
missing values in the dataset. The example below marks the missing values in the dataset, as
we did in the previous section, then attempts to evaluate LDA using 3-fold cross-validation and
print the mean accuracy.

8
9
10
11
12
13
14
15
16
17
18
19

2 197.0 70.0 45.0 543.0 30.5 0.158 53 8
125.0 96.0 NaN NaN NaN 0.232 54 4 110.0
92.0 NaN NaN 37.6 0.191 30 10 168.0 74.0
NaN NaN 38.0 0.537 34 10 139.0 80.0 NaN
NaN 27.1 1.441 57 1 189.0 60.0 23.0 846.0
30.1 0.398 59 5 166.0 72.0 19.0 175.0 25.8
0.587 51 7 100.0 NaN NaN NaN 30.0 0.484
32 0 118.0 84.0 47.0 230.0 45.8 0.551 31 7
107.0 74.0 NaN NaN 29.6 0.254 31 1 103.0
30.0 38.0 83.0 43.3 0.183 33 1 115.0 70.0
30.0 96.0 34.6 0.529 32

1
1
0
1
0
1
1
1
1
1
0
1

# example where missing values cause errors
from numpy import nan
from pandas import read_csv
from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis from sklearn.model_selection import
KFold
from sklearn.model_selection import cross_val_score
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv', header=None)
# replace '0' values with 'nan'
dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, nan)
# split dataset into inputs and outputs
values = dataset.values
X = values[:,0:8]
y = values[:,8]
# define the model
model = LinearDiscriminantAnalysis()
# define the model evaluation procedure
cv = KFold(n_splits=3, shuffle=True, random_state=1)
# evaluate the model

7.4 MissingValuesCauseProblems



7.5. Remove Rows With Missing Values

Listing 7.12: Example of an error caused by the presence of missing values.

Listing 7.14: Example of removing rows that contain missing values.

Running this example, we can see that the number of rows has been aggressively cut from
768 in the original dataset to 392 with all rows containing a NaN removed.
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Listing 7.13: Example error message when trying to evaluate a model with missing values.

This is as we expect. We are prevented from evaluating an LDA algorithm (and other
algorithms) on the dataset with missing values.

Many popular predictive models such as support vector machines, the glmnet, and
neural networks, cannot tolerate any amount of missing values.

— Page 195, Feature Engineering and Selection, 2019.

Now, we can look at methods to handle the missing values.

The simplest strategy for handling missing data is to remove records that contain a missing
value.

The simplest approach for dealing with missing values is to remove entire predictor(s)
and/or sample(s) that contain missing values.

— Page 196, Feature Engineering and Selection, 2019.

We can do this by creating a new Pandas DataFrame with the rows containing missing values
removed. Pandas provides the dropna() function that can be used to drop either columns or
rows with missing data. We can use dropna() to remove all rows with missing data, as follows:

# example of removing rows that contain missing values
from numpy import nan
from pandas import read_csv
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv',
header=None) # summarize the shape of the raw data
print(dataset.shape)
# replace '0' values with 'nan'
dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, nan)
# drop rows with missing values
dataset.dropna(inplace=True)
# summarize the shape of the data with missing rows
removed print(dataset.shape)

result = cross_val_score(model, X, y, cv=cv, scoring='accuracy') #
report the mean performance
print('Accuracy: %.3f' % result.mean())

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

7.5 Remove Rows With Missing Values



7.6. Further Reading

, 2019.

This section provides more resources on the topic if you are looking to go deeper.

Listing 7.16: Example of evaluating a model after rows with missing values are removed.

The example runs successfully and prints the accuracy of the model.
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Listing 7.15: Example output from removing rows that contain missing values.

We now have a dataset that we could use to evaluate an algorithm sensitive to missing values
like LDA.

Listing 7.17: Example output from evaluating a model after rows with missing values are
removed.

Removing rows with missing values can be too limiting on some predictive modeling problems,
an alternative is to impute missing values.

(768, 9)
(392, 9)

Accuracy: 0.781

# evaluate model on data after rows with missing data are removed
from numpy import nan
from pandas import read_csv
from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis from sklearn.model_selection import
KFold
from sklearn.model_selection import cross_val_score
# load the dataset
dataset = read_csv('pima-indians-diabetes.csv', header=None)
# replace '0' values with 'nan'
dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, nan)
# drop rows with missing values
dataset.dropna(inplace=True)
# split dataset into inputs and outputs
values = dataset.values
X = values[:,0:8]
y = values[:,8]
# define the model
model = LinearDiscriminantAnalysis()
# define the model evaluation procedure
cv = KFold(n_splits=3, shuffle=True, random_state=1)
# evaluate the model
result = cross_val_score(model, X, y, cv=cv, scoring='accuracy')
# report the mean performance
print('Accuracy: %.3f' % result.mean())

7.6 Further Reading

7.6.1
 

Bo oks
Feature Engineering and Selection
https://amzn.to/2Yvcupn

https://amzn.to/2Yvcupn


7.7. Summary

, 2013.

, 2019.

, 2016.

In the next section, we will explore how we can impute missing data values using statistics.

In this tutorial, you discovered how to handle machine learning data that contains missing
values. Specifically, you learned:

 
How to mark invalid or corrupt values as missing in your dataset.
 

How to confirm that the presence of marked missing values causes problems for learning
algorithms.

 
How to remove rows with missing data from your dataset and evaluate a learning algorithm

on the transformed dataset.
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  Data Mining: Practical Machine Learning Tools and Techniques
https://amzn.to/3bbfIAP
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pandas.read csv API.
https://pandas.pydata.org/pandas- docs/stable/reference/api/pandas.read_csv.
html

pandas.DataFrame API.
https://pandas.pydata.org/pandas- docs/stable/reference/api/pandas.DataFrame.
html

pandas.DataFrame.replace API.
https://pandas.pydata.org/pandas- docs/stable/reference/api/pandas.DataFrame.
replace.html

pandas.DataFrame.dropna API.
https://pandas.pydata.org/pandas- docs/stable/reference/api/pandas.DataFrame.
dropna.html
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How to Use Statistical Imputation
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This tutorial is divided into three parts; they are:

1. Statistical Imputation

2. Horse Colic Dataset

3. Statistical Imputation With SimpleImputer

Datasets may have missing values, and this can cause problems for many machine learning
algorithms. As such, it is good practice to identify and replace missing values for each column in
your input data prior to modeling your prediction task. This is called missing data imputation, or
imputing for short. A popular approach for data imputation is to calculate a statistical value for
each column (such as a mean) and replace all missing values for that column with the statistic. It
is a popular approach because the statistic is easy to calculate using the training dataset and
because it often results in good performance. In this tutorial, you will discover how to use
statistical imputation strategies for missing data in machine learning. After completing this
tutorial, you will know:

 
Missing values must be marked with NaN values and can be replaced with statistical

measures to calculate the column of values.

 
How to load a CSV file with missing values and mark the missing values with NaN values

and report the number and percentage of missing values for each column.

 
How to impute missing values with statistics as a data preparation method when evaluating

models and when fitting a final model to make predictions on new data.

Let’s get started.8.1 TutorialOverview
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A dataset may have missing values. These are rows of data where one or more values or columns
in that row are not present. The values may be missing completely or they may be marked with a
special character or value, such as a question mark (“?”).

These values can be expressed in many ways. I’ve seen them show up as nothing
at all [...], an empty string [...], the explicit string NULL or undefined or N/A

or NaN, and the number 0, among others. No matter how they appear in your
dataset, knowing what to expect and checking to make sure the data matches that

expectation will reduce problems as you start to use the data.

— Page 10, Bad Data Handbook, 2012.

Values could be missing for many reasons, often specific to the problem domain, and might
include reasons such as corrupt measurements or data unavailability.

They may occur for a number of reasons, such as malfunctioning measurement
equipment, changes in experimental design during data collection, and collation of

several similar but not identical datasets.

— Page 63, Data Mining: Practical Machine Learning Tools and Techniques, 2016.

Most machine learning algorithms require numeric input values, and a value to be present
for each row and column in a dataset. As such, missing values can cause problems for machine
learning algorithms. Because of this, it is common to identify missing values in a dataset and
replace them with a numeric value. This is called data imputing, or missing data imputation.

A simple and popular approach to data imputation involves using statistical methods to
estimate a value for a column from those values that are present, then replace all missing values
in the column with the calculated statistic. It is simple because statistics are fast to calculate
and it is popular because it often proves very effective. Common statistics calculated include:
 
The column mean value.
 
The column median value.
 
The column mode value.
 
A constant value.

Now that we are familiar with statistical methods for missing value imputation, let’s take a
look at a dataset with missing values.

8.2 Statistical Imputation



8.3. Horse Colic Dataset

Listing 8.4: Example of summarizing the rows with missing values.

Listing 8.1: Example of a dataset with missing values.

Marking missing values with a NaN (not a number) value in a loaded dataset using Python
is a best practice. We can load the dataset using the read csv() Pandas function and specify
the na values to load values of “?” as missing, marked with a NaN value.
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Listing 8.3: Example of summarizing the first few lines of the dataset.

We can then enumerate each column and report the number of rows with missing values for
the column.

Listing 8.2: Example of loading the dataset and marking missing values.

Once loaded, we can review the loaded data to confirm that “?” values are marked as NaN.

The horse colic dataset describes medical characteristics of horses with colic and whether they
lived or died. There are 300 rows and 26 input variables with one output variable. It is a binary
classification prediction task that involves predicting 1 if the horse lived and 2 if the horse died.
There are many fields we could select to predict in this dataset. In this case, we will predict
whether the problem was surgical or not (column index 23), making it a binary classification
problem. The dataset has numerous missing values for many of the columns where each missing
value is marked with a question mark character (“?”). You can learn more about the dataset here:

 
Horse Colic Dataset (horse-colic.csv).1
 
Horse Colic Dataset Description (horse-colic.names).2
Below provides an example of rows from the dataset with marked missing values.

8.3 HorseColicDataset

...
# summarize the first few
rows print(dataframe.head())

...
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

...
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')

https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse- colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse- colic.names

2,1,530101,38.50,66,28,3,3,?,2,5,4,4,?,?,?,3,5,45.00,8.40,?,?,2,2,11300,00000,00000,2
1,1,534817,39.2,88,20,?,?,4,1,3,4,2,?,?,?,4,2,50,85,2,2,3,2,02208,00000,00000,2
2,1,530334,38.30,40,24,1,1,3,1,3,3,1,?,?,?,1,1,33.00,6.70,?,?,1,2,00000,00000,00000,1
1,9,5290409,39.10,164,84,4,1,6,2,2,4,4,1,2,5.00,3,?,48.00,7.20,3,5.30,2,1,02208,00000,00000,1
...

1
2

https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv
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Tying this together, the complete example of loading and summarizing the dataset is listed
b elow.

Listing 8.5: Example of loading and summarizing a dataset with missing values.

Running the example first loads the dataset and summarizes the first five rows. We can see
that the missing values that were marked with a “?” character have been replaced with NaN
values.

Listing 8.6: Example output summarizing the first few lines of the loaded dataset.

Next, we can see the list of all columns in the dataset and the number and percentage of
missing values. We can see that some columns (e.g. column indexes 1 and 2) have no missing
values and other columns (e.g. column indexes 15 and 21) have many or even a majority of
missing values.

0
1
2
3
4

0 1
2 .
0 1
1 .
0 1
2 .
0 1
1 .
0 9
2 .
0 1

> 0, Missing: 1 (0.3%)
> 1, Missing: 0 (0.0%)
> 2, Missing: 0 (0.0%)
> 3, Missing: 60 (20.0%)
> 4, Missing: 24 (8.0%)
> 5, Missing: 58 (19.3%)
> 6, Missing: 56 (18.7%)
> 7, Missing: 69 (23.0%)
> 8, Missing: 47 (15.7%)
> 9, Missing: 32 (10.7%)
> 10, Missing: 55 (18.3%)
> 11, Missing: 44 (14.7%)
> 12, Missing: 56 (18.7%)
> 13, Missing: 104 (34.7%) >
14, Missing: 106 (35.3%) >
15, Missing: 247 (82.3%) >
16, Missing: 102 (34.0%) >
17, Missing: 118 (39.3%) > 18,
Missing: 29 (9.7%)
> 19, Missing: 33 (11.0%)
> 20, Missing: 165 (55.0%)

2 3 4 5 6...212223
530101 38.5 66.0 28.0 3.0 ... NaN 2.0 2
534817 39.2 88.0 20.0 NaN ... 2.0 3.0 2
530334 38.3 40.0 24.0 1.0 ... NaN 1.0 2

5290409 39.1 164.0 84.0 4.0 ... 5.3 2.0 1
530255 37.3 104.0 35.0 NaN ... NaN 2.0 2

2425
11300 0
2208 0

00
2208 0
4300 0

# summarize the horse colic dataset
from pandas import read_csv
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# summarize the first few rows
print(dataframe.head())
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

2
6
0
0
0
0
0

2
7
2
2
1
1
2
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Listing 8.8: Example of defining a SimpleImputer instance.

Then the imputer is fit on a dataset to calculate the statistic for each column.
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Listing 8.9: Example of fitting a SimpleImputer instance.

The fit imputer is then applied to a dataset to create a copy of the dataset with all missing
values for each column replaced with a statistic value.

The SimpleImputer is a data transform that is first configured based on the type of statistic to
calculate for each column, e.g. mean.

Listing 8.10: Example of transforming a dataset with a SimpleImputer instance.

We can demonstrate its usage on the horse colic dataset and confirm it works by summarizing
the total number of missing values in the dataset before and after the transform. The complete
example is listed below.

The scikit-learn machine learning library provides the SimpleImputer class that supports
statistical imputation. In this section, we will explore how to effectively use the SimpleImputer
class.

Listing 8.7: Example output summarizing the number of missing values for each column.

Now that we are familiar with the horse colic dataset that has missing values, let’s look at
how we can use statistical imputation.

...
# fit on the dataset
imputer.fit(X)

> 21, Missing: 198 (66.0%) >
22, Missing: 1 (0.3%)
> 23, Missing: 0 (0.0%)
> 24, Missing: 0 (0.0%)
> 25, Missing: 0 (0.0%)
> 26, Missing: 0 (0.0%)
> 27, Missing: 0 (0.0%)

...
# transform the dataset
Xtrans = imputer.transform(X)

...
# define imputer
imputer = SimpleImputer(strategy='mean')

# statistical imputation transform for the horse colic dataset
from numpy import isnan
from pandas import read_csv
from sklearn.impute import SimpleImputer

8.4 Statistical Imputation With SimpleImputer

8.4.1 SimpleImputer Data Transform



8.4. Statistical Imputation With SimpleImputer

Listing 8.13: Example of defining a with a

Listing 8.12: Example output from imputing missing values in the dataset.

transform.
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Listing 8.11: Example of imputing missing values in the dataset.

Running the example first loads the dataset and reports the total number of missing values
in the dataset as 1,605. The transform is configured, fit, and performed and the resulting new
dataset has no missing values, confirming it was performed as we expected. Each missing value
was replaced with the mean value of its column.

It is a good practice to evaluate machine learning models on a dataset using k-fold cross-
validation. To correctly apply statistical missing data imputation and avoid data leakage, it is
required that the statistics calculated for each column are calculated on the training dataset
only, then applied to the train and test sets for each fold in the dataset.

If we are using resampling to select tuning parameter values or to estimate perfor-
mance, the imputation should be incorporated within the resampling.

— Page 42, Applied Predictive Modeling, 2013.

This can be achieved by creating a modeling pipeline where the first step is the statistical
imputation, then the second step is the model. This can be achieved using the Pipeline class.
For example, the Pipeline below uses a SimpleImputer with a ‘mean’ strategy, followed by a
random forest model.

Missing: 1605
Missing: 0

...
# define modeling pipeline
model = RandomForestClassifier()
imputer = SimpleImputer(strategy='mean')
pipeline = Pipeline(steps=[('i', imputer), ('m', model)])

# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# summarize total missing
print('Missing: %d' % sum(isnan(X).flatten()))
# define imputer
imputer = SimpleImputer(strategy='mean')
# fit on the dataset
imputer.fit(X)
# transform the dataset
Xtrans = imputer.transform(X)
# summarize total missing
print('Missing: %d' % sum(isnan(Xtrans).flatten()))

8.4.2 SimpleImputer and Model Evaluation

Pipeline SimpleImputer



Listing 8.14: Example of evaluating a model on a dataset with statistical imputation.

Running the example correctly applies data imputation to each fold of the cross-validation
pro cedure.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

The pipeline is evaluated using three repeats of 10-fold cross-validation and reports the mean
classification accuracy on the dataset as about 86.6 percent, which is a good score.

How do we know that using a ‘mean’ statistical strategy is good or best for this dataset? The
answer is that we don’t and that it was chosen arbitrarily. We can design an experiment to test
each statistical strategy and discover what works best for this dataset, comparing the mean,
median, mode (most frequent), and constant (0) strategies. The mean accuracy of each approach
can then be compared. The complete example is listed below.

Listing 8.15: Example output from evaluating a model on a dataset with statistical imputation.
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We can evaluate the mean-imputed dataset and random forest modeling pipeline for the
horse colic dataset with repeated 10-fold cross-validation. The complete example is listed below.

Mean Accuracy: 0.866 (0.061)

# compare statistical imputation strategies for the horse colic dataset
from numpy import mean

# evaluate mean imputation and random forest for the horse colic dataset
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# define modeling pipeline
model = RandomForestClassifier()
imputer = SimpleImputer(strategy='mean')
pipeline = Pipeline(steps=[('i', imputer), ('m', model)])
# define model evaluation
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate model
scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
print('Mean Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))

8.4.3 Comparing Different Imputed Statistics
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Listing 8.17: Example output from comparing model performance with different statistical
imputation strategies.

At the end of the run, a box and whisker plot is created for each set of results, allowing the
distribution of results to be compared. We can see that the distribution of accuracy scores for
the constant strategy may be better than the other strategies.

Listing 8.16: Example of comparing model performance with different statistical imputation
strategies.

Running the example evaluates each statistical imputation strategy on the horse colic dataset
using repeated cross-validation. The mean accuracy of each strategy is reported along the way.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, the results suggest that using a constant value, e.g. 0, results in the best
performance of about 87.8 percent, which is an outstanding result.

>mean 0.867 (0.056)
>median 0.868 (0.050)
>most_frequent 0.867 (0.060)
>constant 0.878 (0.046)

from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from matplotlib import pyplot
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# evaluate each strategy on the dataset
results = list()
strategies = ['mean', 'median', 'most_frequent', 'constant']
for s in strategies:
# create the modeling pipeline
pipeline = Pipeline(steps=[('i', SimpleImputer(strategy=s)), ('m',
RandomForestClassifier())])
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# store results
results.append(scores)
print('>%s %.3f (%.3f)' % (s, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=strategies, showmeans=True)
pyplot.show()



8.4. Statistical Imputation With SimpleImputer

Listing 8.18: Example of defining a row of data with missing values.

The complete example is listed below.
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Figure 8.1: Box and Whisker Plot of Statistical Imputation Strategies Applied to the Horse Colic
Dataset.

We may wish to create a final modeling pipeline with the constant imputation strategy and
random forest algorithm, then make a prediction for new data. This can be achieved by defining
the pipeline and fitting it on all available data, then calling the predict() function passing new
data in as an argument. Importantly, the row of new data must mark any missing values using
the NaN value.

8.4.4 Transform When Making a PredictionSimpleImputer

# constant imputation strategy and prediction for the horse colic dataset
from numpy import nan
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer

...
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]



8.5. Further Reading

, 2012.

, 2013.

Imputation of missing values, scikit-learn Documentation.

, 2016.

This section provides more resources on the topic if you are looking to go deeper.

Listing 8.20: Example output from making a prediction on data with missing values.

84

Listing 8.19: Example of making a prediction on data with missing values.

Running the example fits the modeling pipeline on all available data. A new row of data is
defined with missing values marked with NaNs and a classification prediction is made.
Predicted Class: 2

from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# create the modeling pipeline
pipeline = Pipeline(steps=[('i', SimpleImputer(strategy='constant')), ('m',
RandomForestClassifier())])
# fit the model
pipeline.fit(X, y)
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]
# make a prediction
yhat = pipeline.predict([row])
# summarize prediction
print('Predicted Class: %d' % yhat[0])

8.5 Further Reading

8.5.1
 

8.5.2 APIs
 

Bo oks

 

Bad Data Handbook

  Applied Predictive Modeling

  Data Mining: Practical Machine Learning Tools and Techniques

https://amzn.to/3b5yutA

https://amzn.to/3bbfIAP

https://amzn.to/3b2LHTL

https://scikit- learn.org/stable/modules/impute.html

sklearn.impute.SimpleImputer API.
https://scikit- learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.
html

https://amzn.to/3b5yutA
https://amzn.to/3bbfIAP
https://amzn.to/3b2LHTL
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
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In this tutorial, you discovered how to use statistical imputation strategies for missing data in
machine learning. Specifically, you learned:

 
Missing values must be marked with NaN values and can be replaced with statistical

measures to calculate the column of values.

 
How to load a CSV file with missing values and mark the missing values with NaN values

and report the number and percentage of missing values for each column.

 
How to impute missing values with statistics as a data preparation method when evaluating

models and when fitting a final model to make predictions on new data.
In the next section, we will explore how to impute missing data values using a predictive model.

8.6 Summary

8.6.1 Next



Chapter 9

How to Use KNN Imputation
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This tutorial is divided into three parts; they are:

1. k-Nearest Neighbor Imputation

2. Horse Colic Dataset

3. Nearest Neighbor Imputation With

Datasets may have missing values, and this can cause problems for many machine learning
algorithms. As such, it is good practice to identify and replace missing values for each column in
your input data prior to modeling your prediction task. This is called missing data imputation, or
imputing for short. A popular approach to missing data imputation is to use a model to predict
the missing values. This requires a model to be created for each input variable that has missing
values. Although any one among a range of different models can be used to predict the missing
values, the k-nearest neighbor (KNN) algorithm has proven to be generally effective, often
referred to as nearest neighbor imputation. In this tutorial, you will discover how to use nearest
neighbor imputation strategies for missing data in machine learning. After completing this
tutorial, you will know:

 
Missing values must be marked with NaN values and can be replaced with nearest neighbor

estimated values.

 
How to load a CSV file with missing values and mark the missing values with NaN values

and report the number and percentage of missing values for each column.

 
How to impute missing values with nearest neighbor models as a data preparation method

when evaluating models and when fitting a final model to make predictions on new data.

Let’s get started.9.1 TutorialOverview

KNNImputer
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A dataset may have missing values. These are rows of data where one or more values or columns
in that row are not present. The values may be missing completely or they may be marked with a
special character or value, such as a question mark (“?”). Values could be missing for many
reasons, often specific to the problem domain, and might include reasons such as corrupt
measurements or unavailability. Most machine learning algorithms require numeric input values,
and a value to be present for each row and column in a dataset. As such, missing values can
cause problems for machine learning algorithms. It is common to identify missing values in a
dataset and replace them with a numeric value. This is called data imputing, or missing data
imputation.

... missing data can be imputed. In this case, we can use information in the training
set predictors to, in essence, estimate the values of other predictors.

— Page 42, Applied Predictive Modeling, 2013.

An effective approach to data imputing is to use a model to predict the missing values. A
model is created for each feature that has missing values, taking as input values of perhaps all
other input features.

One popular technique for imputation is a K-nearest neighbor model. A new sample
is imputed by finding the samples in the training set “closest” to it and averages

these nearby points to fill in the value.

— Page 42, Applied Predictive Modeling, 2013.

If input variables are numeric, then regression models can be used for prediction, and this
case is quite common. A range of different models can be used, although a simple k-nearest
neighbor (KNN) model has proven to be effective in experiments. The use of a KNN model to
predict or fill missing values is referred to as Nearest Neighbor Imputation or KNN imputation.

We show that KNNimpute appears to provide a more robust and sensitive method
for missing value estimation [...] and KNNimpute surpasses the commonly used row

average method (as well as filling missing values with zeros).

— Missing Value Estimation Methods For DNA Microarrays, 2001.

Configuration of KNN imputation often involves selecting the distance measure (e.g. Eu-
clidean) and the number of contributing neighbors for each prediction, the k hyperparameter of
the KNN algorithm. Now that we are familiar with nearest neighbor methods for missing value
imputation, let’s take a look at a dataset with missing values.

9.2 k-Nearest Neighbor Imputation
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Listing 9.3: Example of summarizing the rows with missing values.

Tying this together, the complete example of loading and summarizing the dataset is listed
b elow.
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Listing 9.4: Example of loading and summarizing a dataset with missing values.

Running the example first loads the dataset and summarizes the first five rows. We can see
that the missing values that were marked with a “?” character have been replaced with NaN
values.

Listing 9.2: Example of summarizing the first few lines of the dataset.

We can then enumerate each column and report the number of rows with missing values for
the column.

Listing 9.1: Example of loading the dataset and marking missing values.

Once loaded, we can review the loaded data to confirm that “?” values are marked as NaN.

We will use the horse colic dataset in this tutorial. The horse colic dataset describes medical
characteristics of horses with colic and whether they lived or died. To learn more about this
dataset, you can refer to Chapter 8. We can load the dataset using the read csv() Pandas function
and specify the na values to load values of “?” as missing, marked with a NaN value.

9.3 HorseColicDataset

0
0 1
2 .
0 1

2 3
530101 38.5

...
# summarize the first few
rows print(dataframe.head())

4 5 6 ... 21 2223
66.0 28.0 3.0 ... NaN 2.0 2

2425
11300 0

...
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

...
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')

# summarize the horse colic dataset
from pandas import read_csv
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# summarize the first few rows
print(dataframe.head())
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

2
6
0

2
7
2



9.4. Nearest Neighbor Imputation with KNNImputer 89

Listing 9.6: Example output summarizing the number of missing values for each column.

Now that we are familiar with the horse colic dataset that has missing values, let’s look at
how we can use nearest neighbor imputation.

The scikit-learn machine learning library provides the KNNImputer class that supports nearest
neighbor imputation. In this section, we will explore how to effectively use the KNNImputer
class.

Listing 9.5: Example output summarizing the first few lines of the loaded dataset.

Next, we can see the list of all columns in the dataset and the number and percentage of
missing values. We can see that some columns (e.g. column indexes 1 and 2) have no missing
values and other columns (e.g. column indexes 15 and 21) have many or even a majority of
missing values.

1
2
3
4

1.0
2.0
1.0
2.0

1
1
9
1

> 0, Missing: 1 (0.3%)
> 1, Missing: 0 (0.0%)
> 2, Missing: 0 (0.0%)
> 3, Missing: 60 (20.0%)
> 4, Missing: 24 (8.0%)
> 5, Missing: 58 (19.3%)
> 6, Missing: 56 (18.7%)
> 7, Missing: 69 (23.0%)
> 8, Missing: 47 (15.7%)
> 9, Missing: 32 (10.7%)
> 10, Missing: 55 (18.3%)
> 11, Missing: 44 (14.7%)
> 12, Missing: 56 (18.7%)
> 13, Missing: 104 (34.7%) >
14, Missing: 106 (35.3%) >
15, Missing: 247 (82.3%) >
16, Missing: 102 (34.0%) >
17, Missing: 118 (39.3%) > 18,
Missing: 29 (9.7%)
> 19, Missing: 33 (11.0%)
> 20, Missing: 165 (55.0%) >
21, Missing: 198 (66.0%) >
22, Missing: 1 (0.3%)
> 23, Missing: 0 (0.0%)
> 24, Missing: 0 (0.0%)
> 25, Missing: 0 (0.0%)
> 26, Missing: 0 (0.0%)
> 27, Missing: 0 (0.0%)

534817 39.2 88.0 20.0 NaN ... 2.0 3.0 530334
38.3 40.0 24.0 1.0 ... NaN 1.0 5290409 39.1
164.0 84.0 4.0 ... 5.3 2.0 530255 37.3 104.0
35.0 NaN ... NaN 2.0

2
2
1
2

2208
0

2208
4300

0
0
0
0

0
0
0
0

2
1
1
2

9.4 NearestNeighborImputationwith KNNImputer
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Listing 9.7: Example of defining a

Then, the imputer is fit on a dataset.

instance.
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Listing 9.8: Example of fitting a KNNImputer instance.

Then, the fit imputer is applied to a dataset to create a copy of the dataset with all missing
values for each column replaced with an estimated value.

Listing 9.9: Example of using a KNNImputer instance to transform a dataset.

We can demonstrate its usage on the horse colic dataset and confirm it works by summarizing
the total number of missing values in the dataset before and after the transform. The complete
example is listed below.

The KNNImputer is a data transform that is first configured based on the method used to
estimate the missing values. The default distance measure is a Euclidean distance measure that
is NaN aware, e.g. will not include NaN values when calculating the distance between members
of the training dataset. This is set via the metric argument. The number of neighbors is set to five
by default and can be configured by the n neighbors argument.

Finally, the distance measure can be weighed proportional to the distance between instances
(rows), although this is set to a uniform weighting by default, controlled via the weights

argument.

9.4.1 Data TransformKNNImputer

KNNImputer

...
# fit on the dataset
imputer.fit(X)

...
# transform the dataset
Xtrans = imputer.transform(X)

# knn imputation transform for the horse colic dataset
from numpy import isnan
from pandas import read_csv
from sklearn.impute import KNNImputer
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# summarize total missing
print('Missing: %d' % sum(isnan(X).flatten()))
# define imputer
imputer = KNNImputer()
# fit on the dataset
imputer.fit(X)
# transform the dataset
Xtrans = imputer.transform(X)
# summarize total missing

...
# define imputer
imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
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Listing 9.11: Example output from using the to impute missing values.
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Listing 9.12: Example of defining a KNNImputer Pipeline to evaluate a model.

We can evaluate the imputed dataset and random forest modeling pipeline for the horse
colic dataset with repeated 10-fold cross-validation. The complete example is listed below.

Listing 9.10: Example of using the KNNImputer to impute missing values.

Running the example first loads the dataset and reports the total number of missing values
in the dataset as 1,605. The transform is configured, fit, and performed, and the resulting new
dataset has no missing values, confirming it was performed as we expected. Each missing value
was replaced with a value estimated by the model.

It is a good practice to evaluate machine learning models on a dataset using k-fold cross-
validation. To correctly apply nearest neighbor missing data imputation and avoid data leakage,
it is required that the models calculated for each column are calculated on the training dataset
only, then applied to the train and test sets for each fold in the dataset. This can be achieved by
creating a modeling pipeline where the first step is the nearest neighbor imputation, then the
second step is the model. We will implement this using the Pipeline class. For example, the
Pipeline below uses a KNNImputer with the default strategy, followed by a random forest mo
del.

Missing: 1605
Missing: 0

print('Missing: %d' % sum(isnan(Xtrans).flatten()))

...
# define modeling pipeline
model = RandomForestClassifier()
imputer = KNNImputer()
pipeline = Pipeline(steps=[('i', imputer), ('m', model)])

# evaluate knn imputation and random forest for the horse colic dataset
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import KNNImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# define modeling pipeline
model = RandomForestClassifier()
imputer = KNNImputer()

KNNImputer

9.4.2 and Model EvaluationKNNImputer
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Listing 9.13: Example of evaluating a model on a dataset transformed with the KNNImputer.

Running the example correctly applies data imputation to each fold of the cross-validation
pro cedure.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

The pipeline is evaluated using three repeats of 10-fold cross-validation and reports the mean
classification accuracy on the dataset as about 86.2 percent, which is a reasonable score.

Listing 9.14: Example output from evaluating a model on a dataset transformed with the
KNNImputer.

How do we know that using a default number of neighbors of five is good or best for this
dataset? The answer is that we don’t.

The key hyperparameter for the KNN algorithm is k; that controls the number of nearest
neighbors that are used to contribute to a prediction. It is good practice to test a suite of
different values for k. The example below evaluates model pipelines and compares odd values
for k from 1 to 21.

Mean Accuracy: 0.862 (0.059)

# compare knn imputation strategies for the horse colic dataset
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import KNNImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from matplotlib import pyplot
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# evaluate each strategy on the dataset
results = list()
strategies = [str(i) for i in [1,3,5,7,9,15,18,21]]
for s in strategies:

pipeline = Pipeline(steps=[('i', imputer), ('m', model)])
# define model evaluation
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate model
scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
print('Mean Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))

9.4.3 and Different Number of NeighborsKNNImputer



9.4. Nearest Neighbor Imputation with KNNImputer 93

Listing 9.16: Example output from comparing the number of neighbors used in the KNNImputer
transform when evaluating a model.

At the end of the run, a box and whisker plot is created for each set of results, allowing
the distribution of results to be compared. The plot suggest that there is not much difference
in the k value when imputing the missing values, with minor fluctuations around the mean
performance (green triangle).

Listing 9.15: Example of comparing the number of neighbors used in the KNNImputer transform
when evaluating a model.

Running the example evaluates each k value on the horse colic dataset using repeated
cross-validation.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

The mean classification accuracy is reported for the pipeline with each k value used for
imputation. In this case, we can see that larger k values result in a better performing model,
with a k = 5 resulting in the best performance of about 86.9 percent accuracy.

>1 0.861 (0.055)
>3 0.860 (0.058)
>5 0.869 (0.051)
>7 0.864 (0.056)
>9 0.866 (0.052)
>15 0.869 (0.058)
>18 0.861 (0.055)
>21 0.857 (0.056)

# create the modeling pipeline
pipeline = Pipeline(steps=[('i', KNNImputer(n_neighbors=int(s))), ('m',
RandomForestClassifier())])
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# store results
results.append(scores)
print('>%s %.3f (%.3f)' % (s, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=strategies, showmeans=True)
pyplot.show()
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Listing 9.17: Example of defining a row of data with missing values.

The complete example is listed below.
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Figure 9.1: Box and Whisker Plot of Imputation Number of Neighbors for the Horse Colic
Dataset.

We may wish to create a final modeling pipeline with the nearest neighbor imputation and
random forest algorithm, then make a prediction for new data. This can be achieved by defining
the pipeline and fitting it on all available data, then calling the predict() function, passing new
data in as an argument. Importantly, the row of new data must mark any missing values using
the NaN value.

9.4.4 Transform When Making a PredictionKNNImputer

# knn imputation strategy and prediction for the horse colic dataset
from numpy import nan
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import KNNImputer

...
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]



9.5. Further Reading

, 2013.

Imputation of missing values, scikit-learn Documentation.

, 2001.

This section provides more resources on the topic if you are looking to go deeper.

Listing 9.19: Example output from making a prediction on data with missing values.
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Listing 9.18: Example of making a prediction on data with missing values.

Running the example fits the modeling pipeline on all available data. A new row of data is
defined with missing values marked with NaNs and a classification prediction is made.
Predicted Class: 2

from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# create the modeling pipeline
pipeline = Pipeline(steps=[('i', KNNImputer(n_neighbors=21)), ('m',
RandomForestClassifier())])
# fit the model
pipeline.fit(X, y)
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]
# make a prediction
yhat = pipeline.predict([row])
# summarize prediction
print('Predicted Class: %d' % yhat[0])

9.5 Further Reading

9.5.1
 

9.5.2
 

9.5.3 APIs
 

Bo oks

Papers

 

Applied Predictive Modeling

Missing Value Estimation Methods For DNA Microarrays

https://amzn.to/3b2LHTL

https://academic.oup.com/bioinformatics/article/17/6/520/272365

https://scikit- learn.org/stable/modules/impute.html

sklearn.impute.KNNImputer API.
https://scikit- learn.org/stable/modules/generated/sklearn.impute.KNNImputer.
html

https://amzn.to/3b2LHTL
https://academic.oup.com/bioinformatics/article/17/6/520/272365
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
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In this tutorial, you discovered how to use nearest neighbor imputation strategies for missing
data in machine learning. Specifically, you learned:

 
Missing values must be marked with NaN values and can be replaced with nearest neighbor

estimated values.

 
How to load a CSV file with missing values and mark the missing values with NaN values

and report the number and percentage of missing values for each column.

 
How to impute missing values with nearest neighbor models as a data preparation method

when evaluating models and when fitting a final model to make predictions on new data.
In the next section, we will explore how to use an iterative model to impute missing data values.

9.6 Summary

9.6.1 Next



Chapter 10

How to Use Iterative Imputation
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This tutorial is divided into three parts; they are:

1. Iterative Imputation

2. Horse Colic Dataset

3. Iterative Imputation With

Datasets may have missing values, and this can cause problems for many machine learning
algorithms. As such, it is good practice to identify and replace missing values for each column in
your input data prior to modeling your prediction task. This is called missing data imputation, or
imputing for short. A sophisticated approach involves defining a model to predict each missing
feature as a function of all other features and to repeat this process of estimating feature values
multiple times. The repetition allows the refined estimated values for other features to be used
as input in subsequent iterations of predicting missing values. This is generally referred to as
iterative imputation. In this tutorial, you will discover how to use iterative imputation strategies
for missing data in machine learning. After completing this tutorial, you will know:

 
Missing values must be marked with NaN values and can be replaced with iteratively

estimated values.

 
How to load a CSV value with missing values and mark the missing values with NaN

values and report the number and percentage of missing values for each column.

 
How to impute missing values with iterative models as a data preparation method when

evaluating models and when fitting a final model to make predictions on new data.

Let’s get started.10.1 TutorialOverview

IterativeImputer



10.2. Iterative Imputation

Listing 10.1: Example of loading the dataset and marking missing values.
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A dataset may have missing values. These are rows of data where one or more values or columns
in that row are not present. The values may be missing completely or they may be marked with a
special character or value, such as a question mark (“?”). Values could be missing for many
reasons, often specific to the problem domain, and might include reasons such as corrupt
measurements or unavailability. Most machine learning algorithms require numeric input values,
and a value to be present for each row and column in a dataset. As such, missing values can
cause problems for machine learning algorithms.

As such, it is common to identify missing values in a dataset and replace them with a numeric
value. This is called data imputing, or missing data imputation. One approach to imputing missing

values is to use an iterative imputation model. Iterative imputation refers to a process where
each feature is modeled as a function of the other features, e.g. a regression problem where

missing values are predicted. Each feature is imputed sequentially, one after the other, allowing
prior imputed values to be used as part of a model in predicting subsequent features. It is

iterative because this process is repeated multiple times, allowing ever improved estimates
of missing values to be calculated as missing values across all features are estimated. This
approach may be generally referred to as fully conditional specification (FCS) or multivariate
imputation by chained equations (MICE).

This methodology is attractive if the multivariate distribution is a reasonable
description of the data. FCS specifies the multivariate imputation model on a

variable-by-variable basis by a set of conditional densities, one for each incomplete
variable. Starting from an initial imputation, FCS draws imputations by iterating
over the conditional densities. A low number of iterations (say 10-20) is often

sufficient.
— mice: Multivariate Imputation by Chained Equations in R, 2009.

Different regression algorithms can be used to estimate the missing values for each feature,
although linear methods are often used for simplicity. The number of iterations of the procedure
is often kept small, such as 10. Finally, the order that features are processed sequentially can be
considered, such as from the feature with the least missing values to the feature with the most
missing values. Now that we are familiar with iterative methods for missing value imputation,
let’s take a look at a dataset with missing values.

We will use the horse colic dataset in this tutorial. The horse colic dataset describes medical
characteristics of horses with colic and whether they lived or died. To learn more about this
dataset, you can refer to Chapter 8. We can load the dataset using the read csv() Pandas function
and specify the na values to load values of “?” as missing, marked with a NaN value.

10.2 Iterative Imputation

10.3 HorseColicDataset

...
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')



10.3. Horse Colic Dataset

Listing 10.3: Example of summarizing the rows with missing values.

Tying this together, the complete example of loading and summarizing the dataset is listed
b elow.

Listing 10.4: Example of loading and summarizing a dataset with missing values.

Running the example first loads the dataset and summarizes the first five rows. We can see
that the missing values that were marked with a “?” character have been replaced with NaN
values.

Listing 10.2: Example of summarizing the first few lines of the dataset.

We can then enumerate each column and report the number of rows with missing values for
the column.

Listing 10.5: Example output summarizing the first few lines of the loaded dataset.

Next, we can see the list of all columns in the dataset and the number and percentage of
missing values. We can see that some columns (e.g. column indexes 1 and 2) have no missing
values and other columns (e.g. column indexes 15 and 21) have many or even a majority of
missing values.
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Once loaded, we can review the loaded data to confirm that “?” values are marked as NaN.

0
1
2
3
4

0 1
2 .
0 1
1 .
0 1
2 .
0 1
1 .
0 9
2 .
0 1

...
# summarize the first few
rows print(dataframe.head())

2 3 4 5 6...212223
530101 38.5 66.0 28.0 3.0 ... NaN 2.0 2
534817 39.2 88.0 20.0 NaN ... 2.0 3.0 2
530334 38.3 40.0 24.0 1.0 ... NaN 1.0 2

5290409 39.1 164.0 84.0 4.0 ... 5.3 2.0 1
530255 37.3 104.0 35.0 NaN ... NaN 2.0 2

2425
11300 0
2208 0

00
2208 0
4300 0

...
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

# summarize the horse colic dataset
from pandas import read_csv
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# summarize the first few rows
print(dataframe.head())
# summarize the number of rows with missing values for each
column for i in range(dataframe.shape[1]):
# count number of rows with missing values
n_miss = dataframe[[i]].isnull().sum()
perc = n_miss / dataframe.shape[0] * 100
print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))

2
6
0
0
0
0
0

2
7
2
2
1
1
2
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Listing 10.7: Example of defining a instance.

100

The scikit-learn machine learning library provides the IterativeImputer class that supports
iterative imputation. In this section, we will explore how to effectively use the IterativeImputer
class.

Listing 10.6: Example output summarizing the number of missing values for each column.

Now that we are familiar with the horse colic dataset that has missing values, let’s look at
how we can use iterative imputation.

It is a data transform that is first configured based on the method used to estimate the missing
values. By default, a BayesianRidge model is employed that uses a function of all other input
features. Features are filled in ascending order, from those with the fewest missing values to
those with the most.

> 0, Missing: 1 (0.3%)
> 1, Missing: 0 (0.0%)
> 2, Missing: 0 (0.0%)
> 3, Missing: 60 (20.0%)
> 4, Missing: 24 (8.0%)
> 5, Missing: 58 (19.3%)
> 6, Missing: 56 (18.7%)
> 7, Missing: 69 (23.0%)
> 8, Missing: 47 (15.7%)
> 9, Missing: 32 (10.7%)
> 10, Missing: 55 (18.3%)
> 11, Missing: 44 (14.7%)
> 12, Missing: 56 (18.7%)
> 13, Missing: 104 (34.7%) >
14, Missing: 106 (35.3%) >
15, Missing: 247 (82.3%) >
16, Missing: 102 (34.0%) >
17, Missing: 118 (39.3%) > 18,
Missing: 29 (9.7%)
> 19, Missing: 33 (11.0%)
> 20, Missing: 165 (55.0%) >
21, Missing: 198 (66.0%) >
22, Missing: 1 (0.3%)
> 23, Missing: 0 (0.0%)
> 24, Missing: 0 (0.0%)
> 25, Missing: 0 (0.0%)
> 26, Missing: 0 (0.0%)
> 27, Missing: 0 (0.0%)

...
# define imputer
imputer = IterativeImputer(estimator=BayesianRidge(), n_nearest_features=None,
imputation_order='ascending')

10.4 Iterative Imputation With IterativeImputer

IterativeImputer

10.4.1 Data TransformIterativeImputer



10.4. Iterative Imputation With IterativeImputer

Then the imputer is fit on a dataset.

Listing 10.12: Example of using the

Listing 10.10: Example error when you try to use the

Instead, you must add an additional import statement to add support for the
class, as follows:

to impute missing values.
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Listing 10.8: Example of fitting a IterativeImputer instance.

The fit imputer is then applied to a dataset to create a copy of the dataset with all missing
values for each column replaced with an estimated value.

Listing 10.11: Example of adding experimental support for the IterativeImputer.

We can demonstrate its usage on the horse colic dataset and confirm it works by summarizing
the total number of missing values in the dataset before and after the transform. The complete
example is listed below.

Listing 10.9: Example of using a IterativeImputer to transform a dataset.

At the time of writing, the IterativeImputer class cannot be used directly because it is
experimental. If you try to use it directly, you will get an error as follows:
' '

...
# fit on the dataset
imputer.fit(X)

...
# transform the dataset
Xtrans = imputer.transform(X)

ImportError: cannot import nameIterativeImputer

...
from sklearn.experimental import enable_iterative_imputer

# iterative imputation transform for the horse colic dataset
from numpy import isnan
from pandas import read_csv
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# summarize total missing
print('Missing: %d' % sum(isnan(X).flatten()))
# define imputer
imputer = IterativeImputer()
# fit on the dataset
imputer.fit(X)
# transform the dataset
Xtrans = imputer.transform(X)
# summarize total missing
print('Missing: %d' % sum(isnan(Xtrans).flatten()))

IterativeImputer

IterativeImputer.

IterativeImputer



Listing 10.13: Example output from using the to impute missing values.

Listing 10.14: Example of defining a IterativeImputer Pipeline to evaluate a model.

We can evaluate the imputed dataset and random forest modeling pipeline for the horse
colic dataset with repeated 10-fold cross-validation. The complete example is listed below.
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Running the example first loads the dataset and reports the total number of missing values
in the dataset as 1,605. The transform is configured, fit, and performed and the resulting new
dataset has no missing values, confirming it was performed as we expected. Each missing value
was replaced with a value estimated by the model.

It is a good practice to evaluate machine learning models on a dataset using k-fold cross-
validation. To correctly apply iterative missing data imputation and avoid data leakage, it is
required that the models for each column are calculated on the training dataset only, then
applied to the train and test sets for each fold in the dataset. This can be achieved by creating a
modeling pipeline where the first step is the iterative imputation, then the second step is the
model. This can be achieved using the Pipeline class. For example, the Pipeline below uses an
IterativeImputer with the default strategy, followed by a random forest model.

Missing: 1605
Missing: 0

...
# define modeling pipeline
model = RandomForestClassifier()
imputer = IterativeImputer()
pipeline = Pipeline(steps=[('i', imputer), ('m', model)])

# evaluate iterative imputation and random forest for the horse colic dataset
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# define modeling pipeline
model = RandomForestClassifier()
imputer = IterativeImputer()
pipeline = Pipeline(steps=[('i', imputer), ('m', model)])
# define model evaluation
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate model

IterativeImputer

10.4.2 and Model EvaluationIterativeImputer
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Listing 10.16: Example output from evaluating a model on a dataset transformed with the
IterativeImputer.

How do we know that using a default iterative strategy is good or best for this dataset?
The answer is that we don’t.

Listing 10.15: Example of evaluating a model on a dataset transformed with the
IterativeImputer.

Running the example correctly applies data imputation to each fold of the cross-validation
pro cedure.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

The pipeline is evaluated using three repeats of 10-fold cross-validation and reports the mean
classification accuracy on the dataset as about 87.0 percent which is a good score.

By default, imputation is performed in ascending order from the feature with the least missing
values to the feature with the most. This makes sense as we want to have more complete data
when it comes time to estimating missing values for columns where the majority of values are
missing. Nevertheless, we can experiment with different imputation order strategies, such as
descending, right-to-left (Arabic), left-to-right (Roman), and random. The example below
evaluates and compares each available imputation order configuration.

Mean Accuracy: 0.870 (0.049)

# compare iterative imputation strategies for the horse colic dataset
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from matplotlib import pyplot
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# evaluate each strategy on the dataset
results = list()
strategies = ['ascending', 'descending', 'roman', 'arabic', 'random'] for s
in strategies:

scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
print('Mean Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))

10.4.3 and Different Imputation OrderIterativeImputer
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Listing 10.18: Example output from comparing model performance with different data order in
the IterativeImputer.

At the end of the run, a box and whisker plot is created for each set of results, allowing the
distribution of results to be compared.

Listing 10.17: Example of comparing model performance with different data order in the
IterativeImputer.

Running the example evaluates each imputation order on the horse colic dataset using
repeated cross-validation. The mean accuracy of each strategy is reported along the way.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, the results suggest little difference between most of the methods. The results
suggest that left-to-right (Roman) order might be better for this dataset with an accuracy of
about 88.0 percent.

>ascending 0.871 (0.048)
>descending 0.868 (0.050)
>roman 0.880 (0.056)
>arabic 0.872 (0.058)
>random 0.868 (0.051)

# create the modeling pipeline
pipeline = Pipeline(steps=[('i', IterativeImputer(imputation_order=s)), ('m',

RandomForestClassifier())])
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# store results
results.append(scores)
print('>%s %.3f (%.3f)' % (s, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=strategies, showmeans=True)
pyplot.show()



10.4. Iterative Imputation With IterativeImputer 105

Figure 10.1: Box and Whisker Plot of Imputation Order Strategies Applied to the Horse Colic
Dataset.

By default, the IterativeImputer will repeat the number of iterations 10 times. It is possible that
a large number of iterations may begin to bias or skew the estimate and that few iterations may
be preferred. The number of iterations of the procedure can be specified via the max iter
argument. It may be interesting to evaluate different numbers of iterations. The example below
compares different values for max iter from 1 to 20.

10.4.4 and Different Number of IterationsIterativeImputer

# compare iterative imputation number of iterations for the horse colic dataset from
numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from matplotlib import pyplot
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
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Listing 10.19: Example of comparing model performance with different number of iterations in
the IterativeImputer.

Running the example evaluates each number of iterations on the horse colic dataset using
repeated cross-validation.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

The results suggest that very few iterations, such as 4, might be as or more effective than
9-12 iterations on this dataset.

Listing 10.20: Example output from comparing model performance with different number of
iterations in the IterativeImputer.

>1 0.870 (0.054)
>2 0.871 (0.052)
>3 0.873 (0.052)
>4 0.878 (0.054)
>5 0.870 (0.053)
>6 0.874 (0.054)
>7 0.872 (0.054)
>8 0.872 (0.050)
>9 0.869 (0.053)
>10 0.871 (0.050)
>11 0.872 (0.050)
>12 0.876 (0.053)
>13 0.873 (0.050)
>14 0.866 (0.052)
>15 0.872 (0.048)
>16 0.874 (0.055)
>17 0.869 (0.050)
>18 0.869 (0.052)
>19 0.866 (0.053)
>20 0.881 (0.058)

data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# evaluate each strategy on the dataset
results = list()
strategies = [str(i) for i in range(1, 21)]
for s in strategies:
# create the modeling pipeline
pipeline = Pipeline(steps=[('i', IterativeImputer(max_iter=int(s))), ('m',
RandomForestClassifier())])
# evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# store results
results.append(scores)
print('>%s %.3f (%.3f)' % (s, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=strategies, showmeans=True)
pyplot.show()



Listing 10.21: Example of defining a row of data with missing values.

The complete example is listed below.

Figure 10.2: Box and Whisker Plot of Number of Imputation Iterations on the Horse Colic
Dataset.

We may wish to create a final modeling pipeline with the iterative imputation and random forest
algorithm, then make a prediction for new data. This can be achieved by defining the pipeline
and fitting it on all available data, then calling the predict() function, passing new data in as an
argument. Importantly, the row of new data must mark any missing values using the NaN value.
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At the end of the run, a box and whisker plot is created for each set of results, allowing the
distribution of results to be compared.

10.4.5 Transform When Making a PredictionIterativeImputer

# iterative imputation strategy and prediction for the horse colic dataset from
numpy import nan

...
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]



10.5. Further Reading

Imputation of missing values, scikit-learn Documentation.

  mice: Multivariate Imputation by Chained Equations in R, 2009.

This section provides more resources on the topic if you are looking to go deeper.

Listing 10.23: Example output from making a prediction on data with missing values.

  A Method of Estimation of Missing Values in Multivariate Data Suitable for use with an
Electronic Computer, 1960.
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Listing 10.22: Example of making a prediction on data with missing values.
Running the example fits the modeling pipeline on all available data. A new row of data is

defined with missing values marked with NaNs and a classification prediction is made.
Predicted Class: 2

from pandas import read_csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.pipeline import Pipeline
# load dataset
dataframe = read_csv('horse-colic.csv', header=None, na_values='?')
# split into input and output elements
data = dataframe.values
ix = [i for i in range(data.shape[1]) if i != 23]
X, y = data[:, ix], data[:, 23]
# create the modeling pipeline
pipeline = Pipeline(steps=[('i', IterativeImputer()), ('m', RandomForestClassifier())]) # fit the
model
pipeline.fit(X, y)
# define new data
row = [2, 1, 530101, 38.50, 66, 28, 3, 3, nan, 2, 5, 4, 4, nan, nan, nan, 3, 5, 45.00,
8.40, nan, nan, 2, 11300, 00000, 00000, 2]
# make a prediction
yhat = pipeline.predict([row])
# summarize prediction
print('Predicted Class: %d' % yhat[0])

10.5 Further Reading

10.5.1

10.5.2 APIs
 

Papers

 

https://www.jstor.org/stable/2984099?seq=1

https://www.jstatsoft.org/article/view/v045i03

https://scikit- learn.org/stable/modules/impute.html

sklearn.impute.IterativeImputer API.
https://scikit- learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.
html

https://www.jstor.org/stable/2984099?seq=1
https://www.jstatsoft.org/article/view/v045i03
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html


10.6. Summary

In this tutorial, you discovered how to use iterative imputation strategies for missing data in
machine learning. Specifically, you learned:

 
Missing values must be marked with NaN values and can be replaced with iteratively

estimated values.

 
How to load a CSV value with missing values and mark the missing values with NaN

values and report the number and percentage of missing values for each column.

 
How to impute missing values with iterative models as a data preparation method when

evaluating models and when fitting a final model to make predictions on new data.
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This was the final tutorial in this part, in the next part we will explore techniques for selecting
input variables to delete or use in our predictive models.

10.6 Summary

10.6.1 Next



Part IV

FeatureSelection
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Chapter 11

What is Feature Selection

This tutorial is divided into four parts; they are:

1. Feature Selection

2. Statistics for Filter Feature Selection Methods

3. Feature Selection With Any Data Type

4. Common Questions
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Feature selection is the process of reducing the number of input variables when developing a
predictive model. It is desirable to reduce the number of input variables to both reduce the
computational cost of modeling and, in many cases, to improve the performance of the model.
Statistical-based feature selection methods involve evaluating the relationship between each
input variable and the target variable using statistics and selecting those input variables that
have the strongest relationship with the target variable. These methods can be fast and
effective, although the choice of statistical measures depends on the data type of both the input
and output variables.

As such, it can be challenging for a machine learning practitioner to select an appropriate
statistical measure for a dataset when performing filter-based feature selection. In this tutorial,

you will discover how to choose statistical measures for filter-based feature selection with
numerical and categorical data. After reading this tutorial, you will know:

 
There are two main types of feature selection techniques: supervised and unsupervised,

and supervised methods may be divided into wrapper, filter and intrinsic.

 
Filter-based feature selection methods use statistical measures to score the correlation
or dependence between input variables that can be filtered to choose the most relevant

features.
 

Statistical measures for feature selection must be carefully chosen based on the data type
of the input variable and the output or response variable.

Let’s get started.11.1 TutorialOverview



11.2. Feature Selection

variables).
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Feature selection methods are intended to reduce the number of input variables to those that are
believed to be most useful to a model in order to predict the target variable. Some predictive
modeling problems have a large number of variables that can slow the development and training
of models and require a large amount of system memory. Additionally, the performance of some
models can degrade when including input variables that are not relevant to the target variable.

Many models, especially those based on regression slopes and intercepts, will estimate
parameters for every term in the model. Because of this, the presence of non-

informative variables can add uncertainty to the predictions and reduce the overall
effectiveness of the model.

— Page 488, Applied Predictive Modeling, 2013.

One way to think about feature selection methods are in terms of supervised and unsu-
pervised methods. The difference has to do with whether features are selected based on the
target variable or not.

 
Unsupervised Selection: Do not use the target variable (e.g. remove redundant

  Supervised Selection: Use the target variable (e.g. remove irrelevant variables).
Unsupervised feature selection techniques ignore the target variable, such as methods that

remove redundant variables using correlation or features that have few values or low variance
(i.e. data cleaning). Supervised feature selection techniques use the target variable, such as
methods that remove irrelevant variables.

An important distinction to be made in feature selection is that of supervised and
unsupervised methods. When the outcome is ignored during the elimination of

predictors, the technique is unsupervised.

— Page 488, Applied Predictive Modeling, 2013.

Supervised feature selection methods may further be classified into three groups, including
intrinsic, wrapper, filter methods.
 
Intrinsic: Algorithms that perform automatic feature selection during training.
 
Filter: Select subsets of features based on their relationship with the target.
 

Wrapper: Search subsets of features that perform according to a predictive model.
Wrapper feature selection methods create many models with different subsets of input

features and select those features that result in the best performing model according to a
performance metric. These methods are unconcerned with the variable types, although they
can be computationally expensive.

11.2 FeatureSelection



It is common to use correlation type statistical measures between input and output variables as
the basis for filter feature selection. As such, the choice of statistical measures is highly
dependent upon the variable data types. Common data types include numerical (such as height)
and categorical (such as a label), although each may be further subdivided such as integer and
floating point for numerical variables, and boolean, ordinal, or nominal for categorical variables.
Input variables are those that are provided as input to a model. In feature selection, it is this
group of variables that we wish to reduce in size. Output variables are those for which a model is
intended to predict, often called the response variable.

 
Input Variable: Variables used as input to a predictive model.
 
Output Variable: Variables output or predicted by a model (target).

The type of response variable typically indicates the type of predictive modeling problem
being performed. For example, a numerical output variable indicates a regression predictive
modeling problem, and a categorical output variable indicates a classification predictive

modeling
problem.
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Wrapper methods evaluate multiple models using procedures that add and/or remove
predictors to find the optimal combination that maximizes model performance.

— Page 490, Applied Predictive Modeling, 2013.

Filter feature selection methods use statistical techniques to evaluate the relationship between
each input variable and the target variable, and these scores are used as the basis to rank and
choose those input variables that will be used in the model.

Filter methods evaluate the relevance of the predictors outside of the predictive
models and subsequently model only the predictors that pass some criterion.

— Page 490, Applied Predictive Modeling, 2013.

Finally, there are some machine learning algorithms that perform feature selection automat-
ically as part of learning the model. We might refer to these techniques as intrinsic feature
selection methods. This includes algorithms such as penalized regression models like Lasso and
decision trees, including ensembles of decision trees like random forest.

... some models contain built-in feature selection, meaning that the model will only
include predictors that help maximize accuracy. In these cases, the model can pick

and choose which representation of the data is best.

— Page 28, Applied Predictive Modeling, 2013.

Feature selection is also related to dimensionality reduction techniques in that both methods
seek fewer input variables to a predictive model. The difference is that feature selection select
features to keep or remove from the dataset, whereas dimensionality reduction create a projection
of the data resulting in entirely new input features. As such, dimensionality reduction is an
alternate to feature selection rather than a type of feature selection (see Chapter 27).

11.3 Statistics for Feature Selection



Figure 11.1: How to Choose Feature Selection Methods For Machine Learning.

With this framework, let’s review some univariate statistical measures that can be used for
filter-based feature selection.
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Numerical Output: Regression predictive modeling problem.
 
Categorical Output: Classification predictive modeling problem.

The statistical measures used in filter-based feature selection are generally calculated one
input variable at a time with the target variable. As such, they are referred to as univariate
statistical measures. This may mean that any interaction between input variables is not
considered in the filtering process.

Most of these techniques are univariate, meaning that they evaluate each predictor
in isolation. In this case, the existence of correlated predictors makes it possible to
select important, but redundant, predictors. The obvious consequences of this issue
are that too many predictors are chosen and, as a result, collinearity problems arise.

— Page 499, Applied Predictive Modeling, 2013.

We can consider a tree of input and output variable types and select statistical measures of
relationship or correlation designed to work with these data types. The figure below summarizes
this tree and some commonly suggested statistics to use at the leaves of the tree.
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This is a classification predictive modeling problem with categorical input variables. The most
common correlation measure for categorical data is the chi-squared test. You can also use
mutual information (information gain) from the field of information theory.

 
Chi-Squared test (contingency tables).
 
Mutual Information.

We will explore feature selection with categorical input and output variables (classification)
in Chapter 12 using Chi-Squared and mutual information.

This is a regression predictive modeling problem with categorical input variables. This is a
strange example of a regression problem (e.g. you would not encounter it often). Nevertheless,
you can use the same Numerical Input, Categorical Output methods (described above), but in
reverse.

This is a regression predictive modeling problem with numerical input variables. The most
common techniques are to use a correlation coefficient, such as Pearson’s for a linear
correlation, or rank-based methods for a nonlinear correlation.

 
Pearson’s correlation coefficient (linear).
 
Spearman’s rank coefficient (nonlinear).
 
Mutual Information.

We will explore feature selection with numeric input and numerical output variables (re-
gression) in Chapter 14 using Pearson’s correlation and mutual information. In fact, mutual
information is a powerful method that may prove useful for both categorical and numerical
data.

This is a classification predictive modeling problem with numerical input variables. This might be
the most common example of a classification problem, Again, the most common techniques are
correlation based, although in this case, they must take the categorical target into account.

 
ANOVA correlation coefficient (linear).
 
Kendall’s rank coefficient (nonlinear).
 
Mutual Information.

Kendall does assume that the categorical variable is ordinal. We will explore feature selection
with numeric input and categorical output (classification) variables in Chapter 13 using ANOVA
and mutual information.11.3.3

11.3.4

11.3.1 NumericalInput,NumericalOutput

Categorical Input, Numerical Output

11.3.2 Numerical Input, Categorical Output

Categorical Input, Categorical Output



11.4. Feature Selection With Any Data Type

This section lists some common questions and answers when selecting features.
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So far we have looked at measures of statistical correlation that are specific to numerical and
categorical data types. It is rare that we have a dataset with just a single input variable data type.
One approach to handling different input variable data types is to separately select numerical
input variables and categorical input variables using appropriate metrics. This can be achieved
using the ColumnTransformer class that will be introduced in Chapter 24.

Another approach is to use a wrapper method that performs a search through different
combinations or subsets of input features based on the effect they have on model quality. Simple

methods might create a tree of all possible combinations of input features and navigate the
graph based on the pay-off, e.g. using a best-first tree searching algorithm. Alternately, a

stochastic global search algorithm can be used such as a genetic algorithm or simulated
annealing. Although effective, these approaches can be computationally very expensive,

specially for large
training datasets and sophisticated models.

 
Tree-Searching Methods (depth-first, breadth-first, etc.).
 
Stochastic Global Search (simulated annealing, genetic algorithm).

Simpler methods involve systematically adding or removing features from the model until no
further improvement is seen. This includes so-called step-wise models (e.g. step-wiseregression)
and RFE. We will take a closer look at RFE in Chapter 15)

 
Step-Wise Models.
 
RFE.

A final data type agnostic method is to score input features using a model and use a
filter-based feature selection method. Many models will automatically select features or score
features as part of fitting the model and these scores can be used just like the statistical

methods
described above. Decision tree algorithms and ensembles of decision tree algorithms provide a
input variable data type agnostic method of scoring input variables, including algorithms such
as:
 
Classification and Regression Trees (CART).
 
Random Forest
 
Bagged Decision Trees
 
Gradient Boosting
We will explore feature importance methods in more detail in Chapter 16.

11.4

11.5 Common Questions

Feature Selection With Any Data Type



11.6. Further Reading

, 2013.

, 2019.

This section provides more resources on the topic if you are looking to go deeper.

117

There are two main techniques for filtering input variables. The first is to rank all input variables
by their score and select the k-top input variables with the largest score. The second approach is
to convert the scores into a percentage of the largest score and select all features above a
minimum percentile. Both of these approaches are available in the scikit-learn library:

 
Select the top k variables: SelectKBest.
 
Select the top percentile variables: SelectPercentile.

You can apply a feature selection method as part of the modeling pipeline and the features that
are selected may be hidden from you. If you want to know what features were selected by a
given feature selection method, you can apply the feature selection method directly to your
entire training dataset and report the column indexes of the selected features. You can then
relate the column indexes to the names of your input variables to aide in interpreting your
dataset.

This is unknowable. Just like there is no best machine learning algorithm, there is no best
feature selection technique. At least not universally. Instead, you must discover what works best
for your specific problem using careful systematic experimentation. Try a range of different
techniques and discover what works best for your specific problem.

Consider transforming the variables in order to access different statistical methods. For
example, you can transform a categorical variable to ordinal, even if it is not, and see if any
interesting results come out (see Chapter 19). You can also make a numerical variable discrete to
try categorical-based measures (see Chapter 22).

Some statistical measures assume properties of the variables, such as Pearson’s correlation
that assumes a Gaussian probability distribution to the observations and a linear relationship.
You can transform the data to meet the expectations of the test and try the test regardless of the
expectations and compare results (see Chapter 20 and Chapter 21).

Q. How Do You Filter Input Variables?

Q. What is the Best Feature Selection Method?

Q. How Do I Know What Features Were Selected?

Q. How Can I Use Statistics for Other Data Types?

https://amzn.to/2Yvcupn

https://amzn.to/3b2LHTL

11.6 Further Reading

11.6.1
 

Bo oks

  Applied Predictive Modeling

Feature Engineering and Selection

https://amzn.to/2Yvcupn
https://amzn.to/3b2LHTL


11.7. Summary

Feature selection, scikit-learn API.

In the next section, we will explore how to perform feature selection with categorical input and
target variables.
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In this tutorial, you discovered how to choose statistical measures for filter-based feature
selection with numerical and categorical data. Specifically, you learned:

 
There are two main types of feature selection techniques: supervised and unsupervised,

and supervised methods may be divided into wrapper, filter and intrinsic.

 
Filter-based feature selection methods use statistical measures to score the correlation
or dependence between input variables that can be filtered to choose the most relevant

features.
 

Statistical measures for feature selection must be carefully chosen based on the data type
of the input variable and the output or response variable.

11.6.2 API
 

11.7.1 Next

 

 

https://scikit- learn.org/stable/modules/feature_selection.html

sklearn.feature selection.SelectKBest API.
https://scikit- learn.org/stable/modules/generated/sklearn.feature_selection.
SelectKBest.html

sklearn.feature selection.SelectPercentile API.
https://scikit- learn.org/stable/modules/generated/sklearn.feature_selection.
SelectPercentile.html

11.7 Summary

https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html


Chapter 12

How to Select Categorical Input
Features
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This tutorial is divided into three parts; they are:

1. Breast Cancer Categorical Dataset

2. Categorical Feature Selection

3. Modeling With Selected Features

Feature selection is the process of identifying and selecting a subset of input features that are
most relevant to the target variable. Feature selection is often straightforward when working
with real-valued data, such as using the Pearson’s correlation coefficient, but can be challenging
when working with categorical data. The two most commonly used feature selection methods for
categorical input data when the target variable is also categorical (e.g. classification predictive
modeling) are the chi-squared statistic and the mutual information statistic. In this tutorial, you
will discover how to perform feature selection with categorical input data. After completing this
tutorial, you will know:

 
The breast cancer predictive modeling problem with categorical inputs and binary classifi-

cation target variable.

 
How to evaluate the importance of categorical features using the chi-squared and mutual

information statistics.

 
How to perform feature selection for categorical data when fitting and evaluating a

classification model.

Let’s get started.12.1 TutorialOverview



12.2. Breast Cancer Categorical Dataset

Listing 12.2: Example of loading the dataset from file.

Once loaded, we can split the columns into input and output for modeling.

Listing 12.1: Example of a column that contains a single value.

We can load this dataset into memory using the Pandas library.

Listing 12.4: Example of ensuring the loaded values are all strings.

Listing 12.3: Example of separating columns into inputs and outputs.

Finally, we can force all fields in the input data to be string, just in case Pandas tried to
map some automatically to numbers (it does try).
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As the basis of this tutorial, we will use the so-called Breast cancer dataset that has been widely
studied as a machine learning dataset since the 1980s. The dataset classifies breast cancer
patient data as either a recurrence or no recurrence of cancer. There are 286 examples and nine
input variables. It is a binary classification problem. A naive model can achieve an accuracy of 70
percent on this dataset. A good score is about 76 percent. We will aim for this region, but note
that the models in this tutorial are not optimized; they are designed to demonstrate encoding
schemes. You can learn more about the dataset here:

 
Breast Cancer Dataset (breast-cancer.csv).1
 
Breast Cancer Dataset Description (breast-cancer.names).2

Looking at the data, we can see that all nine input variables are categorical. Specifically, all
variables are quoted strings; some are ordinal and some are not.

12.2 Breast Cancer Categorical Dataset

...
# format all fields as string X =
X.astype(str)

...
# load the dataset
data = read_csv(filename, header=None)
# retrieve array
dataset = data.values

...
# split into input and output variables X =
dataset[:, :-1]
y = dataset[:,-1]

https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast- cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast- cancer.names

'40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events'
'
50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'
'
50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events'
'

40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events'
'
40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events'
...

1
2

https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.names
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/breast-cancer.csv
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We can tie all of this together into a helpful function that we can reuse later.

Listing 12.7: Example of loading and splitting the categorical dataset.

Listing 12.6: Example of splitting the loaded dataset into train and test sets.

Tying all of these elements together, the complete example of loading, splitting, and
summarizing the raw categorical dataset is listed below.
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Listing 12.5: Example of a function for loading and preparing the categorical dataset.

Once loaded, we can split the data into training and test sets so that we can fit and evaluate
a learning model. We will use the train test split() function from scikit-learn and use 67
percent of the data for training and 33 percent for testing.

# load the dataset
def load_dataset(filename):
# load the dataset

data = read_csv(filename, header=None)
# retrieve array
dataset = data.values

# split into input and output variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

...
# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

# load and summarize the dataset
from pandas import read_csv
from sklearn.model_selection import train_test_split

# load the dataset
def load_dataset(filename):
# load the dataset
data = read_csv(filename, header=None)
# retrieve array
dataset = data.values
# split into input and output variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # summarize
print('Train', X_train.shape, y_train.shape)
print('Test', X_test.shape, y_test.shape)



Listing 12.11: Example of encoding the categorical variables.

Listing 12.10: Example of a function for encoding the categorical target variable.

We can call these functions to prepare our data.
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Running the example reports the size of the input and output elements of the train and test
sets. We can see that we have 191 examples for training and 95 for testing.

Listing 12.8: Example output from loading and splitting the categorical dataset.

Now that we are familiar with the dataset, let’s look at how we can encode it for modeling.
We can use the OrdinalEncoder class from scikit-learn to encode each variable to integers. This
is a flexible class and does allow the order of the categories to be specified as arguments if any
such order is known. Don’t worry too much about how the OrdinalEncoder transform works
right now, we will explore how it works in Chapter 19. Note that I will leave it as an exercise to
you to update the example below to try specifying the order for those variables that have a
natural ordering and see if it has an impact on model performance.

The best practice when encoding variables is to fit the encoding on the training dataset, then
apply it to the train and test datasets. The function below named prepare inputs() takes the
input data for the train and test sets and encodes it using an ordinal encoding.

Listing 12.9: Example of a function for encoding the categorical input variables.

We also need to prepare the target variable. It is a binary classification problem, so we need
to map the two class labels to 0 and 1. This is a type of ordinal encoding, and scikit-learn
provides the LabelEncoder class specifically designed for this purpose. We could just as easily
use the OrdinalEncoder and achieve the same result, although the LabelEncoder is designed
for encoding a single variable. You will also discover how these two encoders work in Chapter 19.
The prepare targets() function integer-encodes the output data for the train and test sets.

Train (191, 9) (191, 1)
Test (95, 9) (95, 1)

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)

X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)

return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)

y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)

return y_train_enc, y_test_enc

...
# prepare input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)



Listing 12.12: Example of loading and encoding the categorical variables.

Running the example loads the dataset, splits it into train and test sets, then encodes the
categorical input and target variables. The number of input variables remains the same due to
the choice of encoding.
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Tying this all together, the complete example of loading and encoding the input and output
variables for the breast cancer categorical dataset is listed below.

Train (191, 9) (191,)

# example of loading and preparing the breast cancer dataset
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder

# load the dataset
def load_dataset(filename):
# load the dataset
data = read_csv(filename, header=None)
# retrieve array
dataset = data.values
# split into input and output variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
# summarize
print('Train', X_train_enc.shape, y_train_enc.shape)
print('Test', X_test_enc.shape, y_test_enc.shape)
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Listing 12.14: Example of applying chi-squared feature selection.

We can then print the scores for each variable (largest is better), and plot the scores for each
variable as a bar graph to get an idea of how many features we should select.
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There are two popular feature selection techniques that can be used for categorical input data
and a categorical (class) target variable. They are:

 
Chi-Squared Statistic.
 
Mutual Information Statistic.
Let’s take a closer look at each in turn.

Listing 12.13: Example output from loading and encoding the categorical variables.

Now that we have loaded and prepared the breast cancer dataset, we can explore feature
selection.

Pearson’s chi-squared (Greek letter squared, e.g. χ2, pronounced kai) statistical hypothesis test
is an example of a test for independence between categorical variables. The results of this test
can be used for feature selection, where those features that are independent of the target
variable can be removed from the dataset.

When there are three or more levels for the predictor, the degree of association
between predictor and outcome can be measured with statistics such as χ2 (chi-

squared) tests ...

— Page 242, Feature Engineering and Selection, 2019.

The scikit-learn machine library provides an implementation of the chi-squared test in the
chi2() function. This function can be used in a feature selection strategy, such as selecting the
top k most relevant features (largest values) via the SelectKBest class. For example, we can
define the SelectKBest class to use the chi2() function and select all features, then transform
the train and test sets.

Test (95, 9) (95,)

...
fs = SelectKBest(score_func=chi2, k='all')
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train) X_test_fs =
fs.transform(X_test)

12.3 Categorical Feature Selection

12.3.1 Chi-Squared Feature Selection
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Listing 12.15: Example of summarizing the selected features.

Tying this together with the data preparation for the breast cancer dataset in the previous
section, the complete example is listed below.

...
# what are scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()

# example of chi squared feature selection for categorical data from
pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from matplotlib import pyplot

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# feature selection
def select_features(X_train, y_train, X_test):
fs = SelectKBest(score_func=chi2, k='all')
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
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Listing 12.17: Example output from applying chi-squared feature selection and summarizing the
selected features.

A bar chart of the feature importance scores for each input feature is created. This clearly
shows that feature 3 might be the most relevant (according to chi-squared) and that perhaps
four of the nine input features are the most relevant. We could set k = 4 when configuring the
SelectKBest to select these top four features.

Listing 12.16: Example of applying chi-squared feature selection and summarizing the selected
features.

Running the example first prints the scores calculated for each input feature and the target
variable.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see the scores are small and it is hard to get an idea from the number
alone as to which features are more relevant. Perhaps features 3, 4, 5, and 8 are most relevant.

Feature 0: 0.472553
Feature 1: 0.029193
Feature 2: 2.137658
Feature 3: 29.381059
Feature 4: 8.222601
Feature 5: 8.100183
Feature 6: 1.273822
Feature 7: 0.950682
Feature 8: 3.699989

X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
# feature selection
X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc)
# what are scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()
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Figure 12.1: Bar Chart of the Input Features vs The Chi-Squared Feature Importance.
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Listing 12.18: Example of a function for applying mutual information feature selection.

We can perform feature selection using mutual information on the breast cancer set and
print and plot the scores (larger is better) as we did in the previous section. The complete

Mutual information from the field of information theory is the application of information gain
(typically used in the construction of decision trees) to feature selection. Mutual information is
calculated between two variables and measures the reduction in uncertainty for one variable
given a known value of the other variable. The scikit-learn machine learning library provides an
implementation of mutual information for feature selection via the mutual info classif() function.
Like chi2(), it can be used in the SelectKBest feature selection strategy (and other strategies).

12.3.2 MutualInformationFeatureSelection

# feature selection
def select_features(X_train, y_train, X_test):

fs = SelectKBest(score_func=mutual_info_classif, k='all')
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs
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example of using mutual information for categorical feature selection is listed below.
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# example of mutual information feature selection for categorical data
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from matplotlib import pyplot

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# feature selection
def select_features(X_train, y_train, X_test):
fs = SelectKBest(score_func=mutual_info_classif, k='all')
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
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Listing 12.19: Example of applying mutual information feature selection and summarizing the
selected features.

Running the example first prints the scores calculated for each input feature and the target
variable.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that some of the features have a very low score, suggesting that
perhaps they can be removed. Perhaps features 3, 6, 2, and 5 are most relevant.

Listing 12.20: Example output from applying mutual information feature selection and
summarizing the selected features.

A bar chart of the feature importance scores for each input feature is created. Importantly,
a different mixture of features is promoted.

Feature 0: 0.003588
Feature 1: 0.000000
Feature 2: 0.025934
Feature 3: 0.071461
Feature 4: 0.000000
Feature 5: 0.038973
Feature 6: 0.064759
Feature 7: 0.003068
Feature 8: 0.000000

# feature selection
X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc) # what are
scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()
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There are many different techniques for scoring features and selecting features based on scores;
how do you know which one to use? A robust approach is to evaluate models using different
feature selection methods (and numbers of features) and select the method that results in a
model with the best performance. In this section, we will evaluate a Logistic Regression model
with all features compared to a model built from features selected by chi-squared and those
features selected via mutual information. Logistic regression is a good model for testing feature
selection methods as it can perform better if irrelevant features are removed from the model.

Figure 12.2: Bar Chart of the Input Features vs The Mutual Information Feature Importance.

Now that we know how to perform feature selection on categorical data for a classification
predictive modeling problem, we can try developing a model using the selected features and
compare the results.

As a first step, we will evaluate a LogisticRegression model using all the available features. The
model is fit on the training dataset and evaluated on the test dataset. The complete example is
listed below.

12.4 ModelingWithSelectedFeatures

12.4.1 ModelBuiltUsingAllFeatures
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Listing 12.21: Example of evaluating a model using all features in the dataset.
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# evaluation of a model using all input features
from pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
# fit the model
model = LogisticRegression(solver='lbfgs')
model.fit(X_train_enc, y_train_enc)
# evaluate the model
yhat = model.predict(X_test_enc)
# evaluate predictions
accuracy = accuracy_score(y_test_enc, yhat)
print('Accuracy: %.2f' % (accuracy*100))



Listing 12.22: Example output from evaluating a model using all features in the dataset.

Listing 12.23: Example of a function for applying chi-squared feature selection.

The complete example of evaluating a logistic regression model fit and evaluated on data
using this feature selection method is listed below.

We can use the chi-squared test to score the features and select the four most relevant features.
The select features() function below is updated to achieve this.
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Running the example prints the accuracy of the model on the training dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the model achieves a classification accuracy of about 75 percent.
We would prefer to use a subset of features that achieves a classification accuracy that is as
good or better than this.

Accuracy: 75.79

# feature selection
def select_features(X_train, y_train, X_test):
fs = SelectKBest(score_func=chi2, k=4)
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs

# evaluation of a model fit using chi squared input features from
pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

12.4.2 ModelBuiltUsingChi-SquaredFeatures



12.4. Modeling With Selected Features 133

Listing 12.24: Example of evaluating a model using features selected by chi-squared statistics.
Running the example reports the performance of the model on just four of the nine input

features selected using the chi-squared statistic.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we see that the model achieved an accuracy of about 74 percent, a slight drop in
performance. It is possible that some of the features removed are, in fact, adding value directly
or in concert with the selected features. At this stage, we would probably prefer to use all of
the input features.

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# feature selection
def select_features(X_train, y_train, X_test):
fs = SelectKBest(score_func=chi2, k=4)
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
# feature selection
X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc)
# fit the model
model = LogisticRegression(solver='lbfgs')
model.fit(X_train_fs, y_train_enc)
# evaluate the model
yhat = model.predict(X_test_fs)
# evaluate predictions
accuracy = accuracy_score(y_test_enc, yhat)
print('Accuracy: %.2f' % (accuracy*100))
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We can repeat the experiment and select the top four features using a mutual information
statistic. The updated version of the select features() function to achieve this is listed b elow.

Listing 12.25: Example output from evaluating a model using features selected by chi-squared
statistics.

134

Listing 12.26: Example of a function for applying mutual information feature selection.

The complete example of using mutual information for feature selection to fit a logistic
regression model is listed below.

Accuracy: 74.74

# feature selection
def select_features(X_train, y_train, X_test):

fs = SelectKBest(score_func=mutual_info_classif, k=4)
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs

# evaluation of a model fit using mutual information input features from
pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
# format all fields as string
X = X.astype(str)
return X, y

# prepare input data
def prepare_inputs(X_train, X_test):
oe = OrdinalEncoder()
oe.fit(X_train)
X_train_enc = oe.transform(X_train)
X_test_enc = oe.transform(X_test)
return X_train_enc, X_test_enc

12.4.3 Model Built Using Mutual Information Features
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Listing 12.28: Example output from evaluating a model using features selected by mutual
information statistics.

Listing 12.27: Example of evaluating a model using features selected by mutual information
statistics.

Running the example fits the model on the four top selected features chosen using mutual
information.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see a small lift in classification accuracy to 76 percent. To be sure that
the effect is real, it would be a good idea to repeat each experiment multiple times and compare
the mean performance. It may also be a good idea to explore using k-fold cross-validation
instead of a simple train/test split.

Accuracy: 76.84

# prepare target
def prepare_targets(y_train, y_test):
le = LabelEncoder()
le.fit(y_train)
y_train_enc = le.transform(y_train)
y_test_enc = le.transform(y_test)
return y_train_enc, y_test_enc

# feature selection
def select_features(X_train, y_train, X_test):
fs = SelectKBest(score_func=mutual_info_classif, k=4)
fs.fit(X_train, y_train)
X_train_fs = fs.transform(X_train)
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs

# load the dataset
X, y = load_dataset('breast-cancer.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare
input data
X_train_enc, X_test_enc = prepare_inputs(X_train, X_test)
# prepare output data
y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
# feature selection
X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc)
# fit the model
model = LogisticRegression(solver='lbfgs')
model.fit(X_train_fs, y_train_enc)
# evaluate the model
yhat = model.predict(X_test_fs)
# evaluate predictions
accuracy = accuracy_score(y_test_enc, yhat)
print('Accuracy: %.2f' % (accuracy*100))



12.5. Further Reading

API

, 2019.

API.

API.

API

API.

API.

API.
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In this tutorial, you discovered how to perform feature selection with categorical input data.
Specifically, you learned:

 
The breast cancer predictive modeling problem with categorical inputs and binary classifi-

cation target variable.

 
How to evaluate the importance of categorical features using the chi-squared and mutual

information statistics.

 
How to perform feature selection for categorical data when fitting and evaluating a

classification model.
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12.6. Summary

In the next section, we will explore how to use feature selection with numerical input and
categorical target variables.

137

12.6.1 Next



Chapter 13

How to Select Numerical Input
Features

This tutorial is divided into four parts; they are:

1. Diabetes Numerical Dataset

2. Numerical Feature Selection

3. Modeling With Selected Features

4. Tune the Number of Selected Features
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Feature selection is the process of identifying and selecting a subset of input features that are
most relevant to the target variable. Feature selection is often straightforward when working
with real-valued input and output data, such as using the Pearson’s correlation coefficient, but
can be challenging when working with numerical input data and a categorical target variable. The
two most commonly used feature selection methods for numerical input data when the target
variable is categorical (e.g. classification predictive modeling) are the ANOVA F-test statistic and
the mutual information statistic. In this tutorial, you will discover how to perform feature
selection with numerical input data for classification. After completing this tutorial, you will
know:

 
The diabetes predictive modeling problem with numerical inputs and binary classification

target variables.

 
How to evaluate the importance of numerical features using the ANOVA F-test and mutual

information statistics.

 
How to perform feature selection for numerical data when fitting and evaluating a classifi-

cation model.

Let’s get started.13.1 TutorialOverview



13.2. Diabetes Numerical Dataset

Listing 13.2: Example of separating columns into inputs and outputs.

We can tie all of this together into a helpful function that we can reuse later.

Listing 13.1: Example of loading the dataset from file.

Once loaded, we can split the columns into input (X) and output (y) for modeling.

Listing 13.4: Example of splitting the loaded dataset into train and test sets.

Tying all of these elements together, the complete example of loading, splitting, and
summarizing the raw categorical dataset is listed below.

We will use the diabetes dataset as the basis for this tutorial. This dataset was introduced in
Chapter 7. We can load this dataset into memory using the Pandas library.
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Listing 13.3: Example of a function for loading and preparing the dataset.

Once loaded, we can split the data into training and test sets so we can fit and evaluate
a learning model. We will use the train test split() function form scikit-learn and use 67
percent of the data for training and 33 percent for testing.

13.2 DiabetesNumericalDataset

...
# load the dataset
data = read_csv(filename, header=None)
# retrieve array
dataset = data.values

...
# split into input and output variables X =
dataset[:, :-1]
y = dataset[:,-1]

# load the dataset
def load_dataset(filename):
# load the dataset

data = read_csv(filename, header=None)
# retrieve array
dataset = data.values

# split into input and output variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# load and summarize the dataset
from pandas import read_csv
from sklearn.model_selection import train_test_split

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame

...
# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)



13.3. Numerical Feature Selection

There are two popular feature selection techniques that can be used for numerical input data
and a categorical (class) target variable. They are:

 
ANOVAF-Statistic.
 
Mutual Information Statistics.
Let’s take a closer look at each in turn.
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ANOVA is an acronym for analysis of variance and is a parametric statistical hypothesis test for
determining whether the means from two or more samples of data (often three or more) come
from the same distribution or not. An F-statistic, or F-test, is a class of statistical tests that
calculate the ratio between variances values, such as the variance from two different samples or
the explained and unexplained variance by a statistical test, like ANOVA. The ANOVA method is a
type of F-statistic referred to here as an ANOVA F-test.

Importantly, ANOVA is used when one variable is numeric and one is categorical, such as
numerical input variables and a classification target variable in a classification task. The results

of this test can be used for feature selection where those features that are independent of the
target variable can be removed from the dataset.

Listing 13.5: Example of loading and splitting the diabetes dataset.

Running the example reports the size of the input and output elements of the train and test
sets. We can see that we have 514 examples for training and 254 for testing.

Listing 13.6: Example output from loading and splitting the diabetes dataset.

Now that we have loaded and prepared the diabetes dataset, we can explore feature selection.

Train (514, 8) (514, 1)
Test (254, 8) (254, 1)

data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # summarize
print('Train', X_train.shape, y_train.shape)
print('Test', X_test.shape, y_test.shape)

13.3 NumericalFeatureSelection

13.3.1 ANOVA F-test Feature Selection



Listing 13.7: Example of using the ANOVA F-statistic for feature selection.

We can then print the scores for each variable (larger is better) and plot the scores for each
variable as a bar graph to get an idea of how many features we should select.

Listing 13.8: Example of summarizing the selected features.

Tying this together with the data preparation for the diabetes dataset in the previous section,
the complete example is listed below.
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When the outcome is numeric, and [...] the predictor has more than two levels, the
traditional ANOVA F-statistic can be calculated.

— Page 242, Feature Engineering and Selection, 2019.

The scikit-learn machine library provides an implementation of the ANOVA F-test in the
f classif() function. This function can be used in a feature selection strategy, such as selecting
the top k most relevant features (largest values) via the SelectKBest class. For example, we
can define the SelectKBest class to use the f classif() function and select all features, then
transform the train and test sets.

...
# configure to select all features
fs = SelectKBest(score_func=f_classif, k='all')
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)

...
# what are scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()

# example of anova f-test feature selection for numerical data from
pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from matplotlib import pyplot

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y
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Listing 13.10: Example output from applying the ANOVA F-statistic feature selection and
summarizing the selected features.

A bar chart of the feature importance scores for each input feature is created. This clearly
shows that feature 1 might be the most relevant (according to test statistic) and that perhaps
six of the eight input features are the most relevant. We could set k=6 when configuring the
SelectKBest to select these six four features.

Listing 13.9: Example of applying ANOVA F-statistic feature selection and summarizing the
selected features.

Running the example first prints the scores calculated for each input feature and the target
variable.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that some features stand out as perhaps being more relevant than
others, with much larger test statistic values. Perhaps features 1, 5, and 7 are most relevant.

Feature 0: 16.527385
Feature 1: 131.325562
Feature 2: 0.042371
Feature 3: 1.415216
Feature 4: 12.778966
Feature 5: 49.209523
Feature 6: 13.377142
Feature 7: 25.126440

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select all features
fs = SelectKBest(score_func=f_classif, k='all')
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # feature
selection
X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test)
# what are scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()
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Figure 13.1: Bar Chart of the Input Features vs The ANOVA F-test Feature Importance.
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Mutual information from the field of information theory is the application of information gain
(typically used in the construction of decision trees) to feature selection. Mutual information is
calculated between two variables and measures the reduction in uncertainty for one variable
given a known value of the other variable. Mutual information is straightforward when
considering the distribution of two discrete (categorical or ordinal) variables, such as categorical
input and categorical output data. Nevertheless, it can be adapted for use with numerical input
and categorical output.

For technical details on how this can be achieved, see the 2014 paper titled Mutual Information
between Discrete and Continuous Data Sets. The scikit-learn machine learning library provides

an implementation of mutual information for feature selection with numeric input and
categorical output variables via the mutual info classif() function. Like f classif(), it can be used

in the SelectKBest feature selection strategy (and other strategies).

13.3.2 MutualInformationFeatureSelection

...
# configure to select all features
fs = SelectKBest(score_func=mutual_info_classif, k='all') #
learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
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Listing 13.12: Example of applying mutual information feature selection and summarizing the
selected features.

Listing 13.11: Example of a function for applying mutual information feature selection.

We can perform feature selection using mutual information on the diabetes dataset and print
and plot the scores (larger is better) as we did in the previous section. The complete example
of using mutual information for numerical feature selection is listed below.

X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)

# example of mutual information feature selection for numerical input data
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from matplotlib import pyplot

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select all features
fs = SelectKBest(score_func=mutual_info_classif, k='all')
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # feature
selection
X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test)
# what are scores for the features
for i in range(len(fs.scores_)):
print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()
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Running the example first prints the scores calculated for each input feature and the target
variable.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that some of the features have a modestly low score, suggesting that
perhaps they can be removed. Perhaps features 1 and 5 are most relevant.

Figure 13.2: Bar Chart of the Input Features vs the Mutual Information Feature Importance.

Listing 13.13: Example output from applying mutual information feature selection and
summarizing the selected features.

A bar chart of the feature importance scores for each input feature is created. Importantly,
a different mixture of features is promoted.

Feature 1: 0.118431
Feature 2: 0.019966
Feature 3: 0.041791
Feature 4: 0.019858
Feature 5: 0.084719
Feature 6: 0.018079
Feature 7: 0.033098



Listing 13.14: Example of evaluating a model using all features in the dataset.
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Now that we know how to perform feature selection on numerical input data for a classification
predictive modeling problem, we can try developing a model using the selected features and
compare the results.

There are many different techniques for scoring features and selecting features based on scores;
how do you know which one to use? A robust approach is to evaluate models using different
feature selection methods (and numbers of features) and select the method that results in a
model with the best performance. In this section, we will evaluate a Logistic Regression model
with all features compared to a model built from features selected by ANOVA F-test and those
features selected via mutual information. Logistic regression is a good model for testing feature
selection methods as it can perform better if irrelevant features are removed from the model.

As a first step, we will evaluate a LogisticRegression model using all the available features. The
model is fit on the training dataset and evaluated on the test dataset. The complete example is
listed below.

13.4 ModelingWithSelectedFeatures

13.4.1 ModelBuiltUsingAllFeatures

# evaluation of a model using all input features
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # fit the
model
model = LogisticRegression(solver='liblinear')
model.fit(X_train, y_train)
# evaluate the model
yhat = model.predict(X_test)
# evaluate predictions
accuracy = accuracy_score(y_test, yhat)
print('Accuracy: %.2f' % (accuracy*100))



Listing 13.15: Example output from evaluating a model using all features in the dataset.

Listing 13.16: Example of a function for applying ANOVA F-statistic feature selection.

The complete example of evaluating a logistic regression model fit and evaluated on data
using this feature selection method is listed below.

We can use the ANOVA F-test to score the features and select the four most relevant features.
The select features() function below is updated to achieve this.
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Running the example prints the accuracy of the model on the training dataset.

Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the model achieves a classification accuracy of about 77 percent.
We would prefer to use a subset of features that achieves a classification accuracy that is as
good or better than this.

Accuracy: 77.56

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select a subset of features
fs = SelectKBest(score_func=f_classif, k=4)

# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# evaluation of a model using 4 features chosen with anova f-test from
pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

13.4.2 ModelBuiltUsingANOVAF-testFeatures
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Listing 13.18: Example output from evaluating a model using features selected using the ANOVA
F-statistic.

We can repeat the experiment and select the top four features using a mutual information
statistic. The updated version of the select features() function to achieve this is listed b elow.
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Listing 13.17: Example of evaluating a model using features selected using the ANOVA F-
statistic.

Running the example reports the performance of the model on just four of the eight input
features selected using the ANOVA F-test statistic.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we see that the model achieved an accuracy of about 78.74 percent, a lift in
performance compared to the baseline that achieved 77.56 percent.

Accuracy: 78.74

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select a subset of features

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select a subset of features
fs = SelectKBest(score_func=f_classif, k=4)
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # feature
selection
X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test)
# fit the model
model = LogisticRegression(solver='liblinear')
model.fit(X_train_fs, y_train)
# evaluate the model
yhat = model.predict(X_test_fs)
# evaluate predictions
accuracy = accuracy_score(y_test, yhat)
print('Accuracy: %.2f' % (accuracy*100))

13.4.3 Model Built Using Mutual Information Features



13.4. Modeling With Selected Features 149

Listing 13.19: Example of a function for applying Mutual Information feature selection.

The complete example of using mutual information for feature selection to fit a logistic
regression model is listed below.

fs = SelectKBest(score_func=mutual_info_classif, k=4)
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# evaluation of a model using 4 features chosen with mutual information
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# feature selection
def select_features(X_train, y_train, X_test):
# configure to select a subset of features
fs = SelectKBest(score_func=mutual_info_classif, k=4)
# learn relationship from training data
fs.fit(X_train, y_train)
# transform train input data
X_train_fs = fs.transform(X_train)
# transform test input data
X_test_fs = fs.transform(X_test)
return X_train_fs, X_test_fs, fs

# load the dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # feature
selection
X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test)
# fit the model
model = LogisticRegression(solver='liblinear')
model.fit(X_train_fs, y_train)
# evaluate the model
yhat = model.predict(X_test_fs)
# evaluate predictions
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Listing 13.22: Example of defining the model evaluation procedure.

We can define a Pipeline that correctly prepares the feature selection transform on the
training set and applies it to the train set and test set for each fold of the cross-validation. In
this case, we will use the ANOVA F-test statistical method for selecting features.

In the previous example, we selected four features, but how do we know that is a good or best
number of features to select? Instead of guessing, we can systematically test a range of
different numbers of selected features and discover which results in the best performing model.
This is called a grid search, where the k argument to the SelectKBest class can be tuned. It is
good practice to evaluate model configurations on classification tasks using repeated stratified
k-fold cross-validation. We will use three repeats of 10-fold cross-validation via the
RepeatedStratifiedKFold class.

Listing 13.23: Example of defining the modeling pipeline with ANOVA feature selection.

We can then define the grid of values to evaluate as 1 to 8. Note that the grid is a dictionary
that maps parameter names to values to be searched. Given that we are using a Pipeline, we
can access the SelectKBest object via the name we gave it, ‘anova’, and then the parameter
namek,separatedbytwounderscores,or‘anova k’.

Listing 13.21: Example output from evaluating a model using features selected by mutual
information statistics.

Listing 13.20: Example of evaluating a model using features selected by mutual information
statistics.

Running the example fits the model on the four top selected features chosen using mutual
information.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can make no difference compared to the baseline model. This is interesting
as we know the method chose a different four features compared to the previous method.

Accuracy: 77.56

accuracy = accuracy_score(y_test, yhat)
print('Accuracy: %.2f' % (accuracy*100))

...
# define the pipeline to evaluate
model = LogisticRegression(solver='liblinear')
fs = SelectKBest(score_func=f_classif)
pipeline = Pipeline(steps=[('anova',fs), ('lr', model)])

...
# define the evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
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Listing 13.25: Example of defining and executing the grid search.

Tying this together, the complete example is listed below.

Listing 13.24: Example of defining the grid of values to grid search for feature selection.

We can then define and run the search.
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...
# define the grid
grid = dict()
grid['anova__k'] = [i+1 for i in range(X.shape[1])]

...
# define the grid search
search = GridSearchCV(pipeline, grid, scoring='accuracy', n_jobs=-1, cv=cv) #
perform the search
results = search.fit(X, y)

# compare different numbers of features selected using anova f-test
from pandas import read_csv
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# define dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# define the evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# define the pipeline to evaluate
model = LogisticRegression(solver='liblinear')
fs = SelectKBest(score_func=f_classif)
pipeline = Pipeline(steps=[('anova',fs), ('lr', model)])
# define the grid
grid = dict()
grid['anova__k'] = [i+1 for i in range(X.shape[1])]
# define the grid search
search = GridSearchCV(pipeline, grid, scoring='accuracy', n_jobs=-1, cv=cv) #
perform the search
results = search.fit(X, y)
# summarize best
print('Best Mean Accuracy: %.3f' % results.best_score_)
print('Best Config: %s' % results.best_params_)
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Listing 13.26: Example of grid searching the number of features selected by ANOVA.

Running the example grid searches different numbers of selected features using ANOVA
F-test, where each modeling pipeline is evaluated using repeated cross-validation.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, we can see that the best number of selected features is seven; that achieves an
accuracy of about 77 percent.

Listing 13.27: Example output from grid searching the number of features selected by ANOVA.

We might want to see the relationship between the number of selected features and clas-
sification accuracy. In this relationship, we may expect that more features result in a better
performance to a point. This relationship can be explored by manually evaluating each con-
figuration of k for the SelectKBest from 1 to 8, gathering the sample of accuracy scores, and
plotting the results using box and whisker plots side-by-side. The spread and mean of these box
plots would be expected to show any interesting relationship between the number of selected
features and the classification accuracy of the pipeline. The complete example of achieving this
is listed below.

Best Mean Accuracy: 0.770
Best Config: {'anova__k': 7}

# compare different numbers of features selected using anova f-test
from numpy import mean
from numpy import std
from pandas import read_csv
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from matplotlib import pyplot

# load the dataset
def load_dataset(filename):
# load the dataset as a pandas DataFrame
data = read_csv(filename, header=None)
# retrieve numpy array
dataset = data.values
# split into input (X) and output (y) variables
X = dataset[:, :-1]
y = dataset[:,-1]
return X, y

# evaluate a given model using cross-validation
def evaluate_model(model):
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)



Listing 13.28: Example of comparing model performance versus the number of selected features
with ANOVA.

Running the example first reports the mean and standard deviation accuracy for each number
of selected features.
Note: Your specific results may vary given the stochastic nature of the learning algorithm, the
evaluation procedure, or differences in numerical precision. Consider running the example a few
times and compare the average performance.

In this case, it looks like selecting five or seven features results in roughly the same accuracy.
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Listing 13.29: Example output from comparing model performance versus the number of
selected featureswithANOVA.

Box and whisker plots are created side-by-side showing the trend of increasing mean accuracy
with the number of selected features to five features, after which it may become less stable.
Selecting five features might be an appropriate configuration in this case.

>1 0.748 (0.048)
>2 0.756 (0.042)
>3 0.761 (0.044)
>4 0.759 (0.042)
>5 0.770 (0.041)
>6 0.766 (0.042)
>7 0.770 (0.042)
>8 0.768 (0.040)

return scores

# define dataset
X, y = load_dataset('pima-indians-diabetes.csv')
# define number of features to evaluate
num_features = [i+1 for i in range(X.shape[1])]
# enumerate each number of features
results = list()
for k in num_features:
# create pipeline
model = LogisticRegression(solver='liblinear')
fs = SelectKBest(score_func=f_classif, k=k)

pipeline = Pipeline(steps=[('anova',fs), ('lr', model)])
# evaluate the model
scores = evaluate_model(pipeline)
results.append(scores)
# summarize the results

print('>%d %.3f (%.3f)' % (k, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=num_features, showmeans=True)
pyplot.show()


